Skip to main content
Top

30-04-2024 | Original Paper

Deformation in a micropolar material under the influence of Hall current and initial stress fields in the context of a double-temperature thermoelastic theory involving phase lag and higher orders

Authors: Ahmed E. Abouelregal, Ali F. Rashid

Published in: Acta Mechanica

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This work aims to propose a generalized micropolar thermoelastic model for the study of semisolid space. Essentially, it is intended to develop the generalized theory of thermoelasticity combined with the framework of a linear two-temperature theory to present the thermal and mechanical analysis of micropolar magneto-thermoelastic media influenced by initial stress. The higher-order derivatives thermoelasticity model has been applied to establish the model based on two-phase lags under the influence of magnetic Hall current. The normal mode analysis technique was used to solve specific boundary-value problems in the applied theory of magneto-thermostatic micropolar systems. The constitutive equations are constructed, and two distinct temperatures are obtained, respectively, conductive temperature and thermodynamic temperature, as well as displacements, partial rotation, thermal stresses and couple stresses. In addition, the critical values of the physical parameters of the Hall current and initial stress are determined, as is their influence on the wave fields, and the characteristics of such media are determined. Some points of interest highlighting the effects of the magnetic Hall current in the current context have been completed. A comparison was made between different models of thermoelastic theories of higher-order time derivatives.
Literature
1.
go back to reference Truesdell, C.: Die Entwicklung des Drallsatzes. ZAMM. 44(4/5), 149–158 (1964) Truesdell, C.: Die Entwicklung des Drallsatzes. ZAMM. 44(4/5), 149–158 (1964)
2.
go back to reference Eringen, A.C.: Nonlinear theory of continuous media, Arts. 32,40. MCGraw-Hill (1962). Eringen, A.C.: Nonlinear theory of continuous media, Arts. 32,40. MCGraw-Hill (1962).
3.
go back to reference Eringen, A.C., Suhubi, E.: Nonlinear theory of simple micro-elastic solids—I. Int. J. Eng. Sci. 2(2), 189–203 (1964)MathSciNetCrossRef Eringen, A.C., Suhubi, E.: Nonlinear theory of simple micro-elastic solids—I. Int. J. Eng. Sci. 2(2), 189–203 (1964)MathSciNetCrossRef
4.
go back to reference Eringen, A.C.: Linear theory of micropolar elasticity. J. Math. Mech. 1, 909–923 (1966)MathSciNet Eringen, A.C.: Linear theory of micropolar elasticity. J. Math. Mech. 1, 909–923 (1966)MathSciNet
5.
go back to reference Eringen, A., C.: Foundation of micropolar thermo-elasticity Springer-Verlag. Viena (1970) Eringen, A., C.: Foundation of micropolar thermo-elasticity Springer-Verlag. Viena (1970)
6.
go back to reference Nowacki, W.: Couple Stresses in the Theory of Thermoelasticity. Bull. Acad. Polon. Sci Ser. Sci. Tec. 14, 97–106 (1966) Nowacki, W.: Couple Stresses in the Theory of Thermoelasticity. Bull. Acad. Polon. Sci Ser. Sci. Tec. 14, 97–106 (1966)
7.
go back to reference Boschi, E., Ieşan, D.: A generalized theory of linear micropolar thermoelasticity. Meccanica 8, 154–157 (1973)CrossRef Boschi, E., Ieşan, D.: A generalized theory of linear micropolar thermoelasticity. Meccanica 8, 154–157 (1973)CrossRef
9.
go back to reference Pouget, J., Askar, A., Maugin, G., A.: Lattice model for elastic ferroelectric crystals: microscopic approach. Phy Rev B.; 33(9), 6304 (1986). Pouget, J., Askar, A., Maugin, G., A.: Lattice model for elastic ferroelectric crystals: microscopic approach. Phy Rev B.; 33(9), 6304 (1986).
13.
go back to reference Deswal, S., Kalkal, K.: Plane waves in a fractional order micropolar magneto-thermoelastic half-space. Wave Motion 51, 100–113 (2014)MathSciNetCrossRef Deswal, S., Kalkal, K.: Plane waves in a fractional order micropolar magneto-thermoelastic half-space. Wave Motion 51, 100–113 (2014)MathSciNetCrossRef
14.
go back to reference Marin, M., Florea, O.: On temporal behaviour of solutions in thermoelasticity of porous micropolar bodies. Analele Univ Ovidius Constanta Seria Mat. 22(1), 169–188 (2014)MathSciNetCrossRef Marin, M., Florea, O.: On temporal behaviour of solutions in thermoelasticity of porous micropolar bodies. Analele Univ Ovidius Constanta Seria Mat. 22(1), 169–188 (2014)MathSciNetCrossRef
16.
go back to reference Othman, M.I.A., Hasona, W.M., Abd-Elaziz, E.M.: Effect of rotation on micropolar generalized thermoelasticity with two temperatures using a dual-phase lag model. Can. J. Phys. 92, 149 (2014)CrossRef Othman, M.I.A., Hasona, W.M., Abd-Elaziz, E.M.: Effect of rotation on micropolar generalized thermoelasticity with two temperatures using a dual-phase lag model. Can. J. Phys. 92, 149 (2014)CrossRef
17.
go back to reference Othman, M.I., Hasona, W.M., Abd-Elaziz, E.M.: Effect of rotation and initial stress on generalized micropolar thermoelastic medium with three-phase-lag. J. Comput. Theor. Nanosci. 12(9), 2030–2040 (2015)CrossRef Othman, M.I., Hasona, W.M., Abd-Elaziz, E.M.: Effect of rotation and initial stress on generalized micropolar thermoelastic medium with three-phase-lag. J. Comput. Theor. Nanosci. 12(9), 2030–2040 (2015)CrossRef
18.
go back to reference Fahmy, M.A., Shaw, S., Mondal, S., Abouelregal, A.E., Lotfy, K., Kudinov, I.A., Soliman, A.H.: Boundary element modeling for simulation and optimization of three-temperature anisotropic micropolar magneto-thermoviscoelastic problems in porous smart structures using NURBS and genetic algorithm. Int. J. Thermophys. 42, 1–28 (2021). https://doi.org/10.1007/s10765-020-02777-7CrossRef Fahmy, M.A., Shaw, S., Mondal, S., Abouelregal, A.E., Lotfy, K., Kudinov, I.A., Soliman, A.H.: Boundary element modeling for simulation and optimization of three-temperature anisotropic micropolar magneto-thermoviscoelastic problems in porous smart structures using NURBS and genetic algorithm. Int. J. Thermophys. 42, 1–28 (2021). https://​doi.​org/​10.​1007/​s10765-020-02777-7CrossRef
23.
go back to reference Duhamel, J.M.: Second memoire sur les phenomenes thermo-mecaniques. J. de l’École Polytech. 15(25), 1–57 (1837) Duhamel, J.M.: Second memoire sur les phenomenes thermo-mecaniques. J. de l’École Polytech. 15(25), 1–57 (1837)
27.
go back to reference Cattaneo, C.: Sur une forme de l’équation de la chaleur éliminant le paradoxe d’une propagation instantanée (A form of heat conduction equation which eliminates the paradox of instantaneous propagationh). Comp. Rend. Hebd. Séances Acad. Sci. Paris 247(4), 431–433 (1958) Cattaneo, C.: Sur une forme de l’équation de la chaleur éliminant le paradoxe d’une propagation instantanée (A form of heat conduction equation which eliminates the paradox of instantaneous propagationh). Comp. Rend. Hebd. Séances Acad. Sci. Paris 247(4), 431–433 (1958)
28.
go back to reference Vernotte, P.: Les paradoxes de la theorie continue de l’equation de la chaleur. Comptes. Rendus. 246, 3154 (1958) Vernotte, P.: Les paradoxes de la theorie continue de l’equation de la chaleur. Comptes. Rendus. 246, 3154 (1958)
36.
go back to reference Aouadi, M.: Some theorems in the generalized theory of thermo-magnetoelectroelasticity under Green-Lindsay’s model. Acta Mech. 200, 25–43 (2008)CrossRef Aouadi, M.: Some theorems in the generalized theory of thermo-magnetoelectroelasticity under Green-Lindsay’s model. Acta Mech. 200, 25–43 (2008)CrossRef
37.
go back to reference Ivanova, E.A.: Derivation of theory of thermoviscoelasticity by means of two-component medium. Acta Mech. 215, 261–286 (2010)CrossRef Ivanova, E.A.: Derivation of theory of thermoviscoelasticity by means of two-component medium. Acta Mech. 215, 261–286 (2010)CrossRef
38.
go back to reference Guo, S.H.: The thermo-electromagnetic waves in piezoelectric solids. Acta Mech. 219, 231–240 (2011)CrossRef Guo, S.H.: The thermo-electromagnetic waves in piezoelectric solids. Acta Mech. 219, 231–240 (2011)CrossRef
39.
go back to reference Guo, S.H.: The comparisons of thermo-elastic waves for Lord-Shulman mode and Green-Lindsay mode based on Guo’s eigen theory. Acta Mech. 222, 199–208 (2011)CrossRef Guo, S.H.: The comparisons of thermo-elastic waves for Lord-Shulman mode and Green-Lindsay mode based on Guo’s eigen theory. Acta Mech. 222, 199–208 (2011)CrossRef
40.
go back to reference Das, P., Kanoria, M.: Magneto-thermo-elastic response in a perfectly conducting medium with three-phase-lag effect. Acta Mech. 223, 811–828 (2012)MathSciNetCrossRef Das, P., Kanoria, M.: Magneto-thermo-elastic response in a perfectly conducting medium with three-phase-lag effect. Acta Mech. 223, 811–828 (2012)MathSciNetCrossRef
41.
go back to reference Sur, A., Kanoria, M.: Fractional order two-temperature thermoelasticity with finite wave speed. Acta Mech. 223, 2685–2701 (2012)MathSciNetCrossRef Sur, A., Kanoria, M.: Fractional order two-temperature thermoelasticity with finite wave speed. Acta Mech. 223, 2685–2701 (2012)MathSciNetCrossRef
42.
go back to reference Ivanova, E.A.: Description of mechanism of thermal conduction and internal damping by means of two-component Cosserat continuum. Acta Mech. 225, 757–795 (2014)MathSciNetCrossRef Ivanova, E.A.: Description of mechanism of thermal conduction and internal damping by means of two-component Cosserat continuum. Acta Mech. 225, 757–795 (2014)MathSciNetCrossRef
43.
go back to reference Ivanova, E.: Description of nonlinear thermal effects by means of a two-component Cosserat continuum. Acta Mech. 228, 2299–2346 (2017)MathSciNetCrossRef Ivanova, E.: Description of nonlinear thermal effects by means of a two-component Cosserat continuum. Acta Mech. 228, 2299–2346 (2017)MathSciNetCrossRef
44.
go back to reference Surana, K.S., Joy, A.D., Reddy, J.: Ordered rate constitutive theories for thermoviscoelastic solids without memory incorporating internal and Cosserat rotations. Acta Mech. 229, 3189–3213 (2018)MathSciNetCrossRef Surana, K.S., Joy, A.D., Reddy, J.: Ordered rate constitutive theories for thermoviscoelastic solids without memory incorporating internal and Cosserat rotations. Acta Mech. 229, 3189–3213 (2018)MathSciNetCrossRef
45.
go back to reference Mondal, S., Pal, P., Kanoria, M.: Transient response in a thermoelastic half-space solid due to a laser pulse under three theories with memory-dependent derivative. Acta Mech. 230, 179–199 (2019)MathSciNetCrossRef Mondal, S., Pal, P., Kanoria, M.: Transient response in a thermoelastic half-space solid due to a laser pulse under three theories with memory-dependent derivative. Acta Mech. 230, 179–199 (2019)MathSciNetCrossRef
46.
go back to reference Ivanova, E.: On a micropolar continuum approach to some problems of thermo-and electrodynamics. Acta Mech. 1(230), 1685–1715 (2019)MathSciNetCrossRef Ivanova, E.: On a micropolar continuum approach to some problems of thermo-and electrodynamics. Acta Mech. 1(230), 1685–1715 (2019)MathSciNetCrossRef
47.
go back to reference El-Sapa, Sh., Lotfy, Kh., El-Bary, A.: Laser short-pulse impact on magneto-photo-thermodiffusion waves in excited semiconductor medium with fractional heat equation. Acta Mech. 233, 3893–3907 (2022)MathSciNetCrossRef El-Sapa, Sh., Lotfy, Kh., El-Bary, A.: Laser short-pulse impact on magneto-photo-thermodiffusion waves in excited semiconductor medium with fractional heat equation. Acta Mech. 233, 3893–3907 (2022)MathSciNetCrossRef
55.
56.
go back to reference Chen, P.J., Gurtin, M.E.: On a theory of heat conduction involving two temperatures. Z. Angew. Math. Phys. 19, 614–627 (1968)CrossRef Chen, P.J., Gurtin, M.E.: On a theory of heat conduction involving two temperatures. Z. Angew. Math. Phys. 19, 614–627 (1968)CrossRef
57.
go back to reference Chen, P.J., Gurtin, M.E., Williams, W.O.: On the thermodynamics of non-simple elastic materials with two temperatures. Zeitschrift für Angewandte Mathematik Und Physik ZAMP. 20, 107–112 (1969)CrossRef Chen, P.J., Gurtin, M.E., Williams, W.O.: On the thermodynamics of non-simple elastic materials with two temperatures. Zeitschrift für Angewandte Mathematik Und Physik ZAMP. 20, 107–112 (1969)CrossRef
59.
go back to reference Deswal, S., Kumar, S., Jain, K.: Plane wave propagation in a fiber-reinforced diffusive magneto-thermoelastic half space with two-temperature. Waves Random and Complex Med. 32(1), 43–65 (2022)MathSciNetCrossRef Deswal, S., Kumar, S., Jain, K.: Plane wave propagation in a fiber-reinforced diffusive magneto-thermoelastic half space with two-temperature. Waves Random and Complex Med. 32(1), 43–65 (2022)MathSciNetCrossRef
61.
go back to reference Lata, P., Singh, S.: Stoneley wave propagation in nonlocal isotropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer. Steel Compos. Struct. 38(2), 141–150 (2021) Lata, P., Singh, S.: Stoneley wave propagation in nonlocal isotropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer. Steel Compos. Struct. 38(2), 141–150 (2021)
63.
go back to reference Kumar, R., Abbas, I.A.: Deformation due to thermal source in micropolar thermoelastic media with thermal and conductive temperatures. J. Comput. Theor. Nanosci. 10, 2241–2247 (2013)CrossRef Kumar, R., Abbas, I.A.: Deformation due to thermal source in micropolar thermoelastic media with thermal and conductive temperatures. J. Comput. Theor. Nanosci. 10, 2241–2247 (2013)CrossRef
64.
go back to reference Gurtin, M.E., Williams, W.O.: On the clausius-duhem inequality. A Angew. Math. Phys. 17, 626–633 (1966)CrossRef Gurtin, M.E., Williams, W.O.: On the clausius-duhem inequality. A Angew. Math. Phys. 17, 626–633 (1966)CrossRef
65.
go back to reference Gurtin, M.E., Williams, W.O.: An axiomatic foundation for continuum thermodynamics. Arch. Ration. Mech. Anal. 26, 83–117 (1967)MathSciNetCrossRef Gurtin, M.E., Williams, W.O.: An axiomatic foundation for continuum thermodynamics. Arch. Ration. Mech. Anal. 26, 83–117 (1967)MathSciNetCrossRef
66.
go back to reference Ahmadi, G.: On the two temperature theory of heat conducting fluids. Mech. Res. Commun. 4(4), 209–218 (1977)CrossRef Ahmadi, G.: On the two temperature theory of heat conducting fluids. Mech. Res. Commun. 4(4), 209–218 (1977)CrossRef
67.
go back to reference Quintanilla, R.: On existence, structural stability, convergence and spatial behavior in thermoelasticity with two temperatures. Acta Mech. 168, 61–73 (2004)CrossRef Quintanilla, R.: On existence, structural stability, convergence and spatial behavior in thermoelasticity with two temperatures. Acta Mech. 168, 61–73 (2004)CrossRef
68.
go back to reference Mukhopadhyay, S., Prasad, R., Kumar, R.: On the theory of two-temperature thermoelasticity with two phase-lags. J. Therm. Stress. 34(4), 352–365 (2011)CrossRef Mukhopadhyay, S., Prasad, R., Kumar, R.: On the theory of two-temperature thermoelasticity with two phase-lags. J. Therm. Stress. 34(4), 352–365 (2011)CrossRef
69.
go back to reference Abouelregal, A.: On Green and Naghdi thermoelasticity model without energy dissipation with higher order time differential and phase-lags. J. Appl. Comput. Mech. 6(3), 445–456 (2020) Abouelregal, A.: On Green and Naghdi thermoelasticity model without energy dissipation with higher order time differential and phase-lags. J. Appl. Comput. Mech. 6(3), 445–456 (2020)
70.
71.
go back to reference Chiriţă, S., Ciarletta, M., Tibullo, V.: On the thermomechanic consistency of the time differential dual-phase-lag models of heat conduction. Int. J. Heat Mass Transfer. 114, 277–285 (2017)CrossRef Chiriţă, S., Ciarletta, M., Tibullo, V.: On the thermomechanic consistency of the time differential dual-phase-lag models of heat conduction. Int. J. Heat Mass Transfer. 114, 277–285 (2017)CrossRef
72.
go back to reference Chiriţă, S., Ciarletta, M., Tibullo, V.: On the wave propagation in the time differential dual-phase-lag thermoelastic model. Proceed. R. Soc. A Math. Phys. Eng. Sci. 471(2183), 20150400 (2015)MathSciNet Chiriţă, S., Ciarletta, M., Tibullo, V.: On the wave propagation in the time differential dual-phase-lag thermoelastic model. Proceed. R. Soc. A Math. Phys. Eng. Sci. 471(2183), 20150400 (2015)MathSciNet
73.
go back to reference Zakaria, M.: Effects of Hall current and rotation on magneto-micropolar generalized thermoelasticity due to ramp-type heating. Int. J. Electro. Appl. 2(3), 24–32 (2012) Zakaria, M.: Effects of Hall current and rotation on magneto-micropolar generalized thermoelasticity due to ramp-type heating. Int. J. Electro. Appl. 2(3), 24–32 (2012)
74.
go back to reference Abouelregal, A.E.: A novel model of nonlocal thermoelasticity with time derivatives of higher order. Math. Methods Appl. Sci. 43(11), 6746–6760 (2020)MathSciNetCrossRef Abouelregal, A.E.: A novel model of nonlocal thermoelasticity with time derivatives of higher order. Math. Methods Appl. Sci. 43(11), 6746–6760 (2020)MathSciNetCrossRef
75.
go back to reference Youssef, H.: Theory of two-temperature-generalized thermoelasticity. J. Appl. Math. 71, 383–390 (2006)MathSciNet Youssef, H.: Theory of two-temperature-generalized thermoelasticity. J. Appl. Math. 71, 383–390 (2006)MathSciNet
76.
go back to reference Abouelregal, A.E.: Two-temperature thermoelastic model without energy dissipation including higher order time-derivatives and two phase-lags. Mater. Res. Express. 6(11), 116535 (2019)CrossRef Abouelregal, A.E.: Two-temperature thermoelastic model without energy dissipation including higher order time-derivatives and two phase-lags. Mater. Res. Express. 6(11), 116535 (2019)CrossRef
77.
go back to reference Ezzat, M.A., Awad, E.S.: Constitutive relations, uniqueness of solution and thermal shock application in the linear theory of micropolar generalized thermoelasticity involving two temperatures. J. Therm. Stress. 33, 226–250 (2010)CrossRef Ezzat, M.A., Awad, E.S.: Constitutive relations, uniqueness of solution and thermal shock application in the linear theory of micropolar generalized thermoelasticity involving two temperatures. J. Therm. Stress. 33, 226–250 (2010)CrossRef
Metadata
Title
Deformation in a micropolar material under the influence of Hall current and initial stress fields in the context of a double-temperature thermoelastic theory involving phase lag and higher orders
Authors
Ahmed E. Abouelregal
Ali F. Rashid
Publication date
30-04-2024
Publisher
Springer Vienna
Published in
Acta Mechanica
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-024-03922-1

Premium Partners