Skip to main content
Top
Published in: Clean Technologies and Environmental Policy 9/2018

03-08-2018 | Original Paper

Delignification kinetics of empty fruit bunch (EFB): a sustainable and green pretreatment approach using malic acid-based solvents

Authors: Chung Loong Yiin, Suzana Yusup, Armando T. Quitain, Yoshimitsu Uemura, Mitsuru Sasaki, Tetsuya Kida

Published in: Clean Technologies and Environmental Policy | Issue 9/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Recently, the development of efficient and environmentally benign solvents has received great attention to replace current harsh organic solvents. In this context, low-transition-temperature mixtures (LTTMs) have emerged as favorable green solvents for biomass delignification. Palm oil biomass, empty fruit bunch (EFB) was pretreated with commercial l-malic acid and microwave hydrothermally extracted cactus malic acid-derived LTTMs at 60, 80, and 100 °C. The LTTMs applied in this study were derived from malic acid–choline chloride–water and malic acid–monosodium glutamate–water with a molar ratio of 2:4:2 and 3:1:5, respectively. Three first-order reactions were used to express the delignification kinetic model of EFB. The first term was based on the initial stage and assigned as infinite due to the fast rate of delignification which could not be detected. The second and third terms were proportional to bulk and residual delignification stages. A good agreement was obtained between the kinetic model and the experimental data obtained in this study with R2 ≥ 0.91. The activation energies for the delignification reactions using l-malic acid and cactus malic acid-based LTTMs in the bulk and residual stages were approximated as 36–56 and 19–26 kJ/mol and 34–90 and 47–87 kJ/mol, respectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Brandt A, Gräsvik J, Hallett JP, Welton T (2013) Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem 15:550–583CrossRef Brandt A, Gräsvik J, Hallett JP, Welton T (2013) Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem 15:550–583CrossRef
go back to reference Chang SH (2014) An overview of empty fruit bunch from oil palm as feedstock for bio-oil production. Biomass Bioenergy 62:174–181CrossRef Chang SH (2014) An overview of empty fruit bunch from oil palm as feedstock for bio-oil production. Biomass Bioenergy 62:174–181CrossRef
go back to reference Chiang VL, Yu J, Eckert RC (1990) Isothermal reaction kinetics of kraft delignification of Douglas-fir. J Wood Chem and Technol 10:293–310CrossRef Chiang VL, Yu J, Eckert RC (1990) Isothermal reaction kinetics of kraft delignification of Douglas-fir. J Wood Chem and Technol 10:293–310CrossRef
go back to reference Constant Wienk HLJ, Frissen AE, de Peinder P, Boelens R, van Es DS, Grisel RJH, Weckhuysen BM, Huijgen WJJ, Gosselink RJA, Bruiinincx PCA (2016) New insights into the structure and composition of technical lignins: a comparative characterization study. Green Chem 18:2651–2665CrossRef Constant Wienk HLJ, Frissen AE, de Peinder P, Boelens R, van Es DS, Grisel RJH, Weckhuysen BM, Huijgen WJJ, Gosselink RJA, Bruiinincx PCA (2016) New insights into the structure and composition of technical lignins: a comparative characterization study. Green Chem 18:2651–2665CrossRef
go back to reference Dence CW (1992) The determination of lignin. In: Dence C, Lin S (eds) Methods in lignin chemistry. Springer-Verlag, Heidelberg, pp 33–61CrossRef Dence CW (1992) The determination of lignin. In: Dence C, Lin S (eds) Methods in lignin chemistry. Springer-Verlag, Heidelberg, pp 33–61CrossRef
go back to reference Dong L, Zhao XB, Liu DH (2015) Kinetic modeling of atmospheric formic acid pretreatment of wheat straw with “potential degree of reaction” models. RSC Adv 5:20992–21000CrossRef Dong L, Zhao XB, Liu DH (2015) Kinetic modeling of atmospheric formic acid pretreatment of wheat straw with “potential degree of reaction” models. RSC Adv 5:20992–21000CrossRef
go back to reference Fang CJ, Thomsen MH, Frankær CG, Brudecki GP, Schmidt JE, AlNashef IM (2017) Reviving pretreatment effectiveness of deep eutectic solvents on lignocellulosic date palm residues by prior recalcitrance reduction. Ind Eng Chem Res 56:3167–3174CrossRef Fang CJ, Thomsen MH, Frankær CG, Brudecki GP, Schmidt JE, AlNashef IM (2017) Reviving pretreatment effectiveness of deep eutectic solvents on lignocellulosic date palm residues by prior recalcitrance reduction. Ind Eng Chem Res 56:3167–3174CrossRef
go back to reference Francisco M, Bruinhorst A, Kroon MC (2012) New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing. Green Chem 14:2153–2157CrossRef Francisco M, Bruinhorst A, Kroon MC (2012) New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing. Green Chem 14:2153–2157CrossRef
go back to reference Francisco M, Bruinhost A, Kroon MC (2013) Low-transition-temperature mixtures (LTTMs): a new generation of designer solvents. Angew Chem Int Ed 52:3074–3085CrossRef Francisco M, Bruinhost A, Kroon MC (2013) Low-transition-temperature mixtures (LTTMs): a new generation of designer solvents. Angew Chem Int Ed 52:3074–3085CrossRef
go back to reference Fuentes LLG, Rabelo SC, Filho RM, Costa AC (2011) Kinetics of lime pretreatment of sugarcane bagasse to enhance enzymatic hydrolysis. Appl Biochem Biotechnol 163:612–625CrossRef Fuentes LLG, Rabelo SC, Filho RM, Costa AC (2011) Kinetics of lime pretreatment of sugarcane bagasse to enhance enzymatic hydrolysis. Appl Biochem Biotechnol 163:612–625CrossRef
go back to reference Gao JN, Yang X, Wan JJ, He YY, Chang C, Ma XJ, Bai J (2016) Delignification kinetics of corn stover with aqueous ammonia soaking pretreatment. BioResources 11:2403–2416 Gao JN, Yang X, Wan JJ, He YY, Chang C, Ma XJ, Bai J (2016) Delignification kinetics of corn stover with aqueous ammonia soaking pretreatment. BioResources 11:2403–2416
go back to reference Ghaffar SH, Fan M (2013) Structural analysis for lignin characteristics in biomass straw. Biomass Bioenergy 57:264–279CrossRef Ghaffar SH, Fan M (2013) Structural analysis for lignin characteristics in biomass straw. Biomass Bioenergy 57:264–279CrossRef
go back to reference Ghazy MBM (2016) Effect of temperature and time on the kraft pulping of Egyptian bagasse. ISJR NET 5:179–184 Ghazy MBM (2016) Effect of temperature and time on the kraft pulping of Egyptian bagasse. ISJR NET 5:179–184
go back to reference Gominho J, Helena P (2006) Influence of raw material and process variables in the kraft pulping of Cynara Cardunculus L. Ind Crops Prod 24:160–165CrossRef Gominho J, Helena P (2006) Influence of raw material and process variables in the kraft pulping of Cynara Cardunculus L. Ind Crops Prod 24:160–165CrossRef
go back to reference Hou QD, Ju MT, Li WZ, Liu L, Chen Y, Yang Q (2017) Pretreatment of lignocellulosic biomass with ionic liquids and ionic liquid based solvent systems. Molecules 22(490):1–24 Hou QD, Ju MT, Li WZ, Liu L, Chen Y, Yang Q (2017) Pretreatment of lignocellulosic biomass with ionic liquids and ionic liquid based solvent systems. Molecules 22(490):1–24
go back to reference Hu G, Cateto C, Pu Y, Samuel R, Ragauskas AJ (2012) Structural characterization of switchgrass lignin after ethanol organosolv pretreatment. Energy Fuels 26:740–745CrossRef Hu G, Cateto C, Pu Y, Samuel R, Ragauskas AJ (2012) Structural characterization of switchgrass lignin after ethanol organosolv pretreatment. Energy Fuels 26:740–745CrossRef
go back to reference Ibrahim MNM, Zakaria N, Sipaut CS, Sulaiman O, Hashim R (2011) Chemical and thermal properties of lignins from oil palm biomass as a substitute for phenol in a phenol formaldehyde resin production. Carbohydr Polym 86:112–119CrossRef Ibrahim MNM, Zakaria N, Sipaut CS, Sulaiman O, Hashim R (2011) Chemical and thermal properties of lignins from oil palm biomass as a substitute for phenol in a phenol formaldehyde resin production. Carbohydr Polym 86:112–119CrossRef
go back to reference Ishkintana LK, Bennington CPJ (2009) Gas holdup in pulp fibre suspensions: gas voidage profiles in a batch-operated sparged tower. Chem Eng Sci 65:2569–2578CrossRef Ishkintana LK, Bennington CPJ (2009) Gas holdup in pulp fibre suspensions: gas voidage profiles in a batch-operated sparged tower. Chem Eng Sci 65:2569–2578CrossRef
go back to reference John RP, Anisha GS, Nampoothiri KM, Pandey A (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102:186–193CrossRef John RP, Anisha GS, Nampoothiri KM, Pandey A (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102:186–193CrossRef
go back to reference Kaar WE, Brink DL (1991) Simplified analysis of acid soluble lignin. J Wood Chem and Technol 11:465–477CrossRef Kaar WE, Brink DL (1991) Simplified analysis of acid soluble lignin. J Wood Chem and Technol 11:465–477CrossRef
go back to reference Kim S, Holtzapple MT (2006) Delignification kinetics of corn stover in lime pretreatment. Bioresour Technol 97:778–785CrossRef Kim S, Holtzapple MT (2006) Delignification kinetics of corn stover in lime pretreatment. Bioresour Technol 97:778–785CrossRef
go back to reference Krishnan C, Sousa LC, Jin M, Chang L, Dale BE, Balan V (2010) Alkali-based AFEX pretreatment for the conversion of sugarcane bagasse and cane leaf residues to ethanol. Biotechnol Bioeng 107(3):441–450CrossRef Krishnan C, Sousa LC, Jin M, Chang L, Dale BE, Balan V (2010) Alkali-based AFEX pretreatment for the conversion of sugarcane bagasse and cane leaf residues to ethanol. Biotechnol Bioeng 107(3):441–450CrossRef
go back to reference Kuila A, Mukhopadhyay M, Tuli DK, Banerjee R (2011) Accessibility of enzymatically delignified Bambusa bambos for efficient hydrolysis at minimum cellulose loading: an optimization study. Enzyme Res 2011:1–8CrossRef Kuila A, Mukhopadhyay M, Tuli DK, Banerjee R (2011) Accessibility of enzymatically delignified Bambusa bambos for efficient hydrolysis at minimum cellulose loading: an optimization study. Enzyme Res 2011:1–8CrossRef
go back to reference Maugeri Z, Dominguez de María PD (2012) Novel choline chloride-based deep-eutectic-solvents with renewable hydrogen bond donors: levulinic acid and sugar-based polyols. RSC Adv 2:421–425CrossRef Maugeri Z, Dominguez de María PD (2012) Novel choline chloride-based deep-eutectic-solvents with renewable hydrogen bond donors: levulinic acid and sugar-based polyols. RSC Adv 2:421–425CrossRef
go back to reference Mohammad N, Alam MZ, Kabbashi NA, Ahsan A (2012) Effective composting of oil palm industrial waste by filamentous fungi: a review. Resour Conservat Recycl 58:69–78CrossRef Mohammad N, Alam MZ, Kabbashi NA, Ahsan A (2012) Effective composting of oil palm industrial waste by filamentous fungi: a review. Resour Conservat Recycl 58:69–78CrossRef
go back to reference Moniruzzaman M, Ono T (2012) Ionic liquid assisted enzymatic delignification of wood biomass: a new “green” and efficient approach for isolating of cellulose fibers. Biochem Eng J 60:156–160CrossRef Moniruzzaman M, Ono T (2012) Ionic liquid assisted enzymatic delignification of wood biomass: a new “green” and efficient approach for isolating of cellulose fibers. Biochem Eng J 60:156–160CrossRef
go back to reference Monteil-Rivera F, Phuong M, Ye M, Halasz A, Hawari J (2013) Isolation and characterization of herbaceous lignins for applications in biomaterials. Ind Crop Prod 41:356–364CrossRef Monteil-Rivera F, Phuong M, Ye M, Halasz A, Hawari J (2013) Isolation and characterization of herbaceous lignins for applications in biomaterials. Ind Crop Prod 41:356–364CrossRef
go back to reference Nadji H, Diouf PN, Benaboura A, Bedard Y, Riedl B, Stevanovic T (2009) Comparative study of lignins isolated from Alfa grass (Stipa tenacissima L.). Bioresour Technol 100:3585–3592CrossRef Nadji H, Diouf PN, Benaboura A, Bedard Y, Riedl B, Stevanovic T (2009) Comparative study of lignins isolated from Alfa grass (Stipa tenacissima L.). Bioresour Technol 100:3585–3592CrossRef
go back to reference Novo LP, Gurgel LVA, Marabezi K, da Silva Curvelo AA (2011) Delignification of sugarcane bagasse using glycerol-water mixtures to produce pulps for saccharification. Bioresour Technol 102:10040–10046CrossRef Novo LP, Gurgel LVA, Marabezi K, da Silva Curvelo AA (2011) Delignification of sugarcane bagasse using glycerol-water mixtures to produce pulps for saccharification. Bioresour Technol 102:10040–10046CrossRef
go back to reference Oliet M, Rodriguez F, Santos A, Gilarranz MA, Garcia-Ochoa F, Tijero J (2000) Organosolv delignification of Eucalyptus globulus: kinetic study of autocatalyzed ethanol pulping. Ind Eng Chem Res 39:34–39CrossRef Oliet M, Rodriguez F, Santos A, Gilarranz MA, Garcia-Ochoa F, Tijero J (2000) Organosolv delignification of Eucalyptus globulus: kinetic study of autocatalyzed ethanol pulping. Ind Eng Chem Res 39:34–39CrossRef
go back to reference Papadopoulou AA, Efstathiadou E, Patila M, Polydera AC, Stamatis H (2016) Deep eutectic solvents as media for peroxidation reactions catalyzed by heme-dependent biocatalysts. Ind Eng Chem Res 55:5145–5151CrossRef Papadopoulou AA, Efstathiadou E, Patila M, Polydera AC, Stamatis H (2016) Deep eutectic solvents as media for peroxidation reactions catalyzed by heme-dependent biocatalysts. Ind Eng Chem Res 55:5145–5151CrossRef
go back to reference Pedersen M, Johansen KS, Meyer AS (2011) Low temperature lignocellulose pretreatment: effects and interactions of pretreatment pH are critical for maximizing enzymatic monosaccharide yields from wheat straw. Biotechnol Biofuels 4:1–10CrossRef Pedersen M, Johansen KS, Meyer AS (2011) Low temperature lignocellulose pretreatment: effects and interactions of pretreatment pH are critical for maximizing enzymatic monosaccharide yields from wheat straw. Biotechnol Biofuels 4:1–10CrossRef
go back to reference Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF et al (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344:1246843CrossRef Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF et al (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344:1246843CrossRef
go back to reference Rahman SM, Mohd Said SB, Subramanian B, Long BD, Kareem MA, Soin N (2016) Synthesis and characterization of polymer electrolyte using deep eutectic solvents and electrospun Poly(vinyl alcohol) membrane. Ind Eng Chem Res 55:8318–8341CrossRef Rahman SM, Mohd Said SB, Subramanian B, Long BD, Kareem MA, Soin N (2016) Synthesis and characterization of polymer electrolyte using deep eutectic solvents and electrospun Poly(vinyl alcohol) membrane. Ind Eng Chem Res 55:8318–8341CrossRef
go back to reference Rasmussen H, Tanner D, Sorensen HR, Meyer AS (2017) New degradation compounds from lignocellulosic biomass pretreatment: routes for formation of potent oligophenolic enzyme inhibitors. Green Chem 19:464–473CrossRef Rasmussen H, Tanner D, Sorensen HR, Meyer AS (2017) New degradation compounds from lignocellulosic biomass pretreatment: routes for formation of potent oligophenolic enzyme inhibitors. Green Chem 19:464–473CrossRef
go back to reference Rekunen S, Jutila E, Lönnberg B, Virkola NE (1980) Examination of reaction kinetics in kraft cooking. Pap Puu 62:80–86 Rekunen S, Jutila E, Lönnberg B, Virkola NE (1980) Examination of reaction kinetics in kraft cooking. Pap Puu 62:80–86
go back to reference Renders T, Van den Bosch S, Koelewijn SF, Schutyser W, Sels BF (2017) Lignin-first biomass fractionation: the advent of active stabilisation strategies. Energy Environ Sci 10:1551–1557CrossRef Renders T, Van den Bosch S, Koelewijn SF, Schutyser W, Sels BF (2017) Lignin-first biomass fractionation: the advent of active stabilisation strategies. Energy Environ Sci 10:1551–1557CrossRef
go back to reference Rocha GJM, Gonçalves AR, Oliveira BR, Olivares EG, Rossell CEV (2012) Steam explosion pretreatment reproduction and alkaline delignification reactions performed on a pilot scale with sugarcane bagasse for bioethanol production. Ind Crop Prod 35:274–279CrossRef Rocha GJM, Gonçalves AR, Oliveira BR, Olivares EG, Rossell CEV (2012) Steam explosion pretreatment reproduction and alkaline delignification reactions performed on a pilot scale with sugarcane bagasse for bioethanol production. Ind Crop Prod 35:274–279CrossRef
go back to reference Sabatier AA, Pereira H (1993) Soda pulping of bagasse: delignification phases and kinetics. Holzforschung 47:313–317CrossRef Sabatier AA, Pereira H (1993) Soda pulping of bagasse: delignification phases and kinetics. Holzforschung 47:313–317CrossRef
go back to reference Sahoo S, Seydibeyogˆlu MÖ, Mohanty K, Misra M (2011) Characterization of industrial lignins for their utilization in future value added applications. Biomass Bioenergy 35:4230–4237CrossRef Sahoo S, Seydibeyogˆlu MÖ, Mohanty K, Misra M (2011) Characterization of industrial lignins for their utilization in future value added applications. Biomass Bioenergy 35:4230–4237CrossRef
go back to reference Santos A, Rodrı´guez F, Gilarranz MA, Moreno D, Garcı´a-Ochoa F (1997) Kinetic modeling of kraft delignification of Eucalyptus globulus. Ind Eng Chem Res 36:4114–4125CrossRef Santos A, Rodrı´guez F, Gilarranz MA, Moreno D, Garcı´a-Ochoa F (1997) Kinetic modeling of kraft delignification of Eucalyptus globulus. Ind Eng Chem Res 36:4114–4125CrossRef
go back to reference Shatalov AA, Pereira H (2005) Kinetics of organosolv delignification of fibre crop Arundo donax L. Ind Crops Prod 21:203–210CrossRef Shatalov AA, Pereira H (2005) Kinetics of organosolv delignification of fibre crop Arundo donax L. Ind Crops Prod 21:203–210CrossRef
go back to reference Sierra-Ramı´rez R, Garcia LA, Holtzapple MT (2011) Selectivity and delignification kinetics for oxidative short-term lime pretreatment of poplar wood, part I: constant-pressure. Biotechnol Prog 27:976–984CrossRef Sierra-Ramı´rez R, Garcia LA, Holtzapple MT (2011) Selectivity and delignification kinetics for oxidative short-term lime pretreatment of poplar wood, part I: constant-pressure. Biotechnol Prog 27:976–984CrossRef
go back to reference Singh R, Shukla A, Tiwari S, Srivastava M (2014) A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential. Renew Sustain Energy Rev 32:713–728CrossRef Singh R, Shukla A, Tiwari S, Srivastava M (2014) A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential. Renew Sustain Energy Rev 32:713–728CrossRef
go back to reference Soh L, Eckelman MJ (2016) Green solvents in biomass processing. ACS Sustain Chem Eng 4:5821–5837CrossRef Soh L, Eckelman MJ (2016) Green solvents in biomass processing. ACS Sustain Chem Eng 4:5821–5837CrossRef
go back to reference Song W, Deng Y, Xu Y (2015) Delignification reaction kinetics for wheat straw in neutral ionic liquid 1-methyl-3-ethyl bromide imidazole. J Chem Pharm Res 7:527–533 Song W, Deng Y, Xu Y (2015) Delignification reaction kinetics for wheat straw in neutral ionic liquid 1-methyl-3-ethyl bromide imidazole. J Chem Pharm Res 7:527–533
go back to reference Sun R, Tomkinson J, Bolton J (1999) Effects of precipitation pH on the physicochemical properties of the lignins isolated from the black liquor of oil palm empty fruit bunch fiber pulping. Polym Degrad Stab 63:195–200CrossRef Sun R, Tomkinson J, Bolton J (1999) Effects of precipitation pH on the physicochemical properties of the lignins isolated from the black liquor of oil palm empty fruit bunch fiber pulping. Polym Degrad Stab 63:195–200CrossRef
go back to reference Tye YY, Lee KT, Wan Nadiah WA, Leh CP (2014) The effect of various pretreatment methods on oil palm empty fruit bunch (EFB) and kenaf core fibers for sugar production. Procedia Environ Sci 20:328–335CrossRef Tye YY, Lee KT, Wan Nadiah WA, Leh CP (2014) The effect of various pretreatment methods on oil palm empty fruit bunch (EFB) and kenaf core fibers for sugar production. Procedia Environ Sci 20:328–335CrossRef
go back to reference Vázquez G, Antorrena G, González J (1995) Kinetics of acid-catalysed delignification of Eucalyptus globulus wood. Wood Sci Technol 29:267–273CrossRef Vázquez G, Antorrena G, González J (1995) Kinetics of acid-catalysed delignification of Eucalyptus globulus wood. Wood Sci Technol 29:267–273CrossRef
go back to reference Verevkin SP, Sazonova AY, Frolkova AK, Zaitsau DH, Prikhodko IV, Held C (2015) Separation performance of biorenewable deep eutectic solvents. Ind Eng Chem Res 54:3498–3504CrossRef Verevkin SP, Sazonova AY, Frolkova AK, Zaitsau DH, Prikhodko IV, Held C (2015) Separation performance of biorenewable deep eutectic solvents. Ind Eng Chem Res 54:3498–3504CrossRef
go back to reference Wang K, Bauer S, Sun RC (2012) Structural transformation of miscanthus × giganteus lignin fractionated under mild formosolv, basic organosolv, and cellulolytic enzyme conditions. J Agric Food Chem 60:144–152CrossRef Wang K, Bauer S, Sun RC (2012) Structural transformation of miscanthus × giganteus lignin fractionated under mild formosolv, basic organosolv, and cellulolytic enzyme conditions. J Agric Food Chem 60:144–152CrossRef
go back to reference Watkins D, Nuruddin M, Hosur M, Tcherbi-Narteh A, Jeelani S (2015) Extraction and characterization of lignin from different biomass resources. J Mater Res Technol 4:26–32CrossRef Watkins D, Nuruddin M, Hosur M, Tcherbi-Narteh A, Jeelani S (2015) Extraction and characterization of lignin from different biomass resources. J Mater Res Technol 4:26–32CrossRef
go back to reference Yiin CL, Quitain AT, Yusup S, Sasaki M, Uemura Y, Kida T (2016a) Characterization of natural low transition temperature mixtures (LTTMs): green solvents for biomass delignification. Bioresour Technol 199:258–264CrossRef Yiin CL, Quitain AT, Yusup S, Sasaki M, Uemura Y, Kida T (2016a) Characterization of natural low transition temperature mixtures (LTTMs): green solvents for biomass delignification. Bioresour Technol 199:258–264CrossRef
go back to reference Yiin CL, Quitain AT, Yusup S, Sasaki M, Uemura Y, Kida T (2016b) Microwave-assisted hydrothermal extraction of malic acid for the synthesis of low transition temperature mixtures. J Cleaner Prod 113:919–924CrossRef Yiin CL, Quitain AT, Yusup S, Sasaki M, Uemura Y, Kida T (2016b) Microwave-assisted hydrothermal extraction of malic acid for the synthesis of low transition temperature mixtures. J Cleaner Prod 113:919–924CrossRef
go back to reference Yiin CL, Quitain AT, Yusup S, Uemura Y, Sasaki M, Kida T (2017) Choline chloride (ChCl) and monosodium glutamate (MSG)-based green solvents from optimized cactus malic acid for biomass delignification. Bioresour Technol 244:941–948CrossRef Yiin CL, Quitain AT, Yusup S, Uemura Y, Sasaki M, Kida T (2017) Choline chloride (ChCl) and monosodium glutamate (MSG)-based green solvents from optimized cactus malic acid for biomass delignification. Bioresour Technol 244:941–948CrossRef
go back to reference Yiin CL, Yusup S, Quitain AT, Uemura Y, Sasaki M, Kida T (2018) Thermogravimetric analysis and kinetic modeling of low-transition-temperature mixtures pretreated oil palm empty fruit bunch for possible maximum yield of pyrolysis oil. Bioresour Technol 255:189–197CrossRef Yiin CL, Yusup S, Quitain AT, Uemura Y, Sasaki M, Kida T (2018) Thermogravimetric analysis and kinetic modeling of low-transition-temperature mixtures pretreated oil palm empty fruit bunch for possible maximum yield of pyrolysis oil. Bioresour Technol 255:189–197CrossRef
Metadata
Title
Delignification kinetics of empty fruit bunch (EFB): a sustainable and green pretreatment approach using malic acid-based solvents
Authors
Chung Loong Yiin
Suzana Yusup
Armando T. Quitain
Yoshimitsu Uemura
Mitsuru Sasaki
Tetsuya Kida
Publication date
03-08-2018
Publisher
Springer Berlin Heidelberg
Published in
Clean Technologies and Environmental Policy / Issue 9/2018
Print ISSN: 1618-954X
Electronic ISSN: 1618-9558
DOI
https://doi.org/10.1007/s10098-018-1592-5

Other articles of this Issue 9/2018

Clean Technologies and Environmental Policy 9/2018 Go to the issue