Skip to main content
Top
Published in: Wireless Personal Communications 3/2021

10-05-2021

Density Based Fuzzy C Means Clustering to prolong Network  Lifetime in Smart Grids

Authors: K. Deepa, Zaheeruddin, Shruti Vashist

Published in: Wireless Personal Communications | Issue 3/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Wireless sensor networks (WSN's) are preferred for industrial applications due to progressive increase of sensor electronics. One such application is deployment of WSN's in smart grids. Smart Grid integrates information and communication techniques with electricity network. Smart grids utilize sophisticated control and monitoring devices for improving the efficiency of the grid. For energy efficient, low cost monitoring and control in smart grid WSN's is treated as a promising technology. Advanced Metering Infrastructure (AMI) is the key technology in the distribution networks of Smart Grid. The AMI is composed of various sensors for metering purpose. The meter data is also useful for the distribution operators to manage the demand response. The network involves smart meters, smart electric gas and water meters along with digital network management appliances for optimizing the electric network with real time data management. The smart sensors are limited in terms of battery, operational power and memory. These sensors communicate with the base station in restricted range. The communication between smart grid nodes and base station (sink) is multi-hop in nature. The communication takes place within limited range of communication so the security concerns that are involved in the network are to be handled by the routing protocols. So as to make the bidirectional communication efficient between the smart sensors and utility an effective routing scheme is required for these energy limited devices to handle the heavy network traffic in smart grids. Here energy efficient routing for WSN's in NAN networks to attain load balancing is proposed through density based Fuzzy C means clustering (DFCM). The obtained simulation results show that DFCM can provide a satisfactory performance for enhancing the network life span.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Lo, C.-H., & Ansari, N. (2012). The progressive smart grid system from both power and communications aspects. IEEE Communications Surveys & Tutorials, 14(3), 799–821. Lo, C.-H., & Ansari, N. (2012). The progressive smart grid system from both power and communications aspects. IEEE Communications Surveys & Tutorials, 14(3), 799–821.
2.
go back to reference Siemens, U., Smart energy consumption and the smart grid, USA Siemens/building technologies. Siemens, U., Smart energy consumption and the smart grid, USA Siemens/building technologies.
3.
go back to reference Ullah, R., Faheem, Y., & Kim, B.-S. (2017). Energy and congestion-aware routing metric for smart grid AMI networks in smart city. IEEE Access, 5, 13799–13810.CrossRef Ullah, R., Faheem, Y., & Kim, B.-S. (2017). Energy and congestion-aware routing metric for smart grid AMI networks in smart city. IEEE Access, 5, 13799–13810.CrossRef
4.
go back to reference Kuzlu, M., Pipattanasomporn, M., & Rahman, S. (2014). Communication Network requirements for major smart grid applications in HAN, NAN and WAN. Computer Networks, 67, 74–88.CrossRef Kuzlu, M., Pipattanasomporn, M., & Rahman, S. (2014). Communication Network requirements for major smart grid applications in HAN, NAN and WAN. Computer Networks, 67, 74–88.CrossRef
6.
go back to reference Saputro, N., Akkaya, K., & Uludag, S. (2012). A survey of routing protocols for smart grid communications. Computer Networks, 5(11), 2742–2771.CrossRef Saputro, N., Akkaya, K., & Uludag, S. (2012). A survey of routing protocols for smart grid communications. Computer Networks, 5(11), 2742–2771.CrossRef
8.
go back to reference Zhang, Y., Li, X., Zhang, S., & Zhen, Y. (2012). Wireless sensor network in smart grid: Applications and issue. In (2012) World Congress on Information and Communication Technologies, (pp 1204–1208), IEEE. Zhang, Y., Li, X., Zhang, S., & Zhen, Y. (2012). Wireless sensor network in smart grid: Applications and issue. In (2012) World Congress on Information and Communication Technologies, (pp 1204–1208), IEEE.
9.
go back to reference Vaccaro, A., Velotto, G., & Zobaa, A. F. (2011). A decentralized and cooperative architecture for optimal voltage regulation in smart grids. IEEE Transactions on Industrial Electronics, 58(10), 4593–4602.CrossRef Vaccaro, A., Velotto, G., & Zobaa, A. F. (2011). A decentralized and cooperative architecture for optimal voltage regulation in smart grids. IEEE Transactions on Industrial Electronics, 58(10), 4593–4602.CrossRef
10.
go back to reference Bumiller, G. (2009). Single frequency network technology for fast ad hoc communication networks over power lines. Stein: WiKu-Wiss.-Verlag. Bumiller, G. (2009). Single frequency network technology for fast ad hoc communication networks over power lines. Stein: WiKu-Wiss.-Verlag.
11.
go back to reference Moslehi, K., Kumar, R., et al. (2010). A reliability perspective of the smart grid. IEEE Transactions on Smart Grid, 1(1), 57–64.CrossRef Moslehi, K., Kumar, R., et al. (2010). A reliability perspective of the smart grid. IEEE Transactions on Smart Grid, 1(1), 57–64.CrossRef
12.
go back to reference Arnold, G. W. (2011). Challenges and opportunities in smart grid: A position article. Proceedings of the IEEE, 99(6), 922–927.CrossRef Arnold, G. W. (2011). Challenges and opportunities in smart grid: A position article. Proceedings of the IEEE, 99(6), 922–927.CrossRef
13.
go back to reference Erol-Kantarci, M., & Mouftah, H. T. (2015). Energy-efficient information and communication infrastructures in the smart grid: A survey on interactions and open issues. IEEE Communications Surveys & Tutorials, 17(1), 179–197.CrossRef Erol-Kantarci, M., & Mouftah, H. T. (2015). Energy-efficient information and communication infrastructures in the smart grid: A survey on interactions and open issues. IEEE Communications Surveys & Tutorials, 17(1), 179–197.CrossRef
14.
go back to reference Fang, X., Misra, S., Xue, G., & Yang, D. (2011). Smart grid-the new and improved power grid: A survey. IEEE Communications Surveys & Tutorials, 14(4), 944–980.CrossRef Fang, X., Misra, S., Xue, G., & Yang, D. (2011). Smart grid-the new and improved power grid: A survey. IEEE Communications Surveys & Tutorials, 14(4), 944–980.CrossRef
15.
go back to reference Fadel, E., Gungor, V. C., Nassef, L., Akkari, N., Malik, M. A., Almasri, S., et al. (2015). A survey on wireless sensor networks for smart grid. Computer Communications, 71, 22–33.CrossRef Fadel, E., Gungor, V. C., Nassef, L., Akkari, N., Malik, M. A., Almasri, S., et al. (2015). A survey on wireless sensor networks for smart grid. Computer Communications, 71, 22–33.CrossRef
16.
go back to reference Yang, G., Liu, S., He, X., Xiong, N., & Wu, C. (2016). Adjustable trajectory design based on node density for mobile sink in wsns. Sensors, 16(12), 2091.CrossRef Yang, G., Liu, S., He, X., Xiong, N., & Wu, C. (2016). Adjustable trajectory design based on node density for mobile sink in wsns. Sensors, 16(12), 2091.CrossRef
17.
go back to reference Heinzelman, W. B., Chandrakasan, A. P., Balakrishnan, H., et al. (2002). An application-specific protocol architecture for wireless micro sensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.CrossRef Heinzelman, W. B., Chandrakasan, A. P., Balakrishnan, H., et al. (2002). An application-specific protocol architecture for wireless micro sensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.CrossRef
18.
go back to reference Kour, H., & Sharma, A. K. (2010). Hybrid energy efficient distributed protocol for heterogeneous wireless sensor network. International Journal of Computer Applications, 4(6), 1–5.CrossRef Kour, H., & Sharma, A. K. (2010). Hybrid energy efficient distributed protocol for heterogeneous wireless sensor network. International Journal of Computer Applications, 4(6), 1–5.CrossRef
19.
go back to reference Manjeshwar, A., & Dharma P. A. (2001). TEEN: ARouting Protocol for Enhanced Efficiency in Wireless Sensor Networks. ipdps, 1(2001). Manjeshwar, A., & Dharma P. A. (2001). TEEN: ARouting Protocol for Enhanced Efficiency in Wireless Sensor Networks. ipdps, 1(2001).
20.
go back to reference Smaragdakis, G., Matta, I., & Azer Bestavros, S. E. P. (2004). A stable election protocol for clustered heterogeneous wireless sensor networks. Boston University Computer Science Department. Smaragdakis, G., Matta, I., & Azer Bestavros, S. E. P. (2004). A stable election protocol for clustered heterogeneous wireless sensor networks. Boston University Computer Science Department.
21.
go back to reference Chatterjee, M., Das, S. K., & Turgut, D. (2002). Wca: A weighted clustering algorithm for mobile ad hoc networks. Cluster Computing, 5(2), 193–204.CrossRef Chatterjee, M., Das, S. K., & Turgut, D. (2002). Wca: A weighted clustering algorithm for mobile ad hoc networks. Cluster Computing, 5(2), 193–204.CrossRef
22.
go back to reference Wei, D., Jin, Y., Vural, S., Moessner, K., & Tafazolli, R. (2011). An energy efficient clustering solution for wireless sensor networks. IEEE Transactions on Wireless Communications, 10(11), 3973–3983.CrossRef Wei, D., Jin, Y., Vural, S., Moessner, K., & Tafazolli, R. (2011). An energy efficient clustering solution for wireless sensor networks. IEEE Transactions on Wireless Communications, 10(11), 3973–3983.CrossRef
23.
go back to reference Li, X., Zhou, F., & Du, J. (2013). Ldts: A lightweight and dependable trust system for clustered wireless sensor networks. IEEE Transactions on Information Forensics and Security, 8(6), 924–935.CrossRef Li, X., Zhou, F., & Du, J. (2013). Ldts: A lightweight and dependable trust system for clustered wireless sensor networks. IEEE Transactions on Information Forensics and Security, 8(6), 924–935.CrossRef
24.
go back to reference Kalpakis, K., Dasgupta, K., & Namjoshi, P. (2002). Maximum lifetime data gathering and aggregation in wireless sensor networks. In Networks, (pp. 685–696), World Scientific. Kalpakis, K., Dasgupta, K., & Namjoshi, P. (2002). Maximum lifetime data gathering and aggregation in wireless sensor networks. In Networks, (pp. 685–696), World Scientific.
25.
go back to reference Alnasser, A., & Sun, H. (2017). A fuzzy logic trust model for secure routing in smart grid networks. IEEE Access, 5, 17896–17903.CrossRef Alnasser, A., & Sun, H. (2017). A fuzzy logic trust model for secure routing in smart grid networks. IEEE Access, 5, 17896–17903.CrossRef
26.
go back to reference Villas, L. A., Boukerche, A., Ramos, H. S., de Oliveira, H. A. F., de Araujo, R. B., & Loureiro, A. A. F. (2012). Drina: A lightweight and reliable routing approach for in-network aggregation in wireless sensor networks. IEEE Transactions on Computers, 62(4), 676–689.MathSciNetCrossRef Villas, L. A., Boukerche, A., Ramos, H. S., de Oliveira, H. A. F., de Araujo, R. B., & Loureiro, A. A. F. (2012). Drina: A lightweight and reliable routing approach for in-network aggregation in wireless sensor networks. IEEE Transactions on Computers, 62(4), 676–689.MathSciNetCrossRef
27.
go back to reference Vallejo, A., Zaballos, A., Selga, J. M., & Dalmau, J. (2012). Next generation QoS control architectures for distribution smart grid communication networks. IEEE Communications Magazine, 50(5), 128–134.CrossRef Vallejo, A., Zaballos, A., Selga, J. M., & Dalmau, J. (2012). Next generation QoS control architectures for distribution smart grid communication networks. IEEE Communications Magazine, 50(5), 128–134.CrossRef
28.
go back to reference Qin, Z., Ma, C., Wang, L., Xu, J., & Lu, B. (2013). An overlapping clustering approach for routing in wireless sensor networks. International Journal of Distributed Sensor Networks, 9(3), 867385.CrossRef Qin, Z., Ma, C., Wang, L., Xu, J., & Lu, B. (2013). An overlapping clustering approach for routing in wireless sensor networks. International Journal of Distributed Sensor Networks, 9(3), 867385.CrossRef
29.
go back to reference Lee, J., & Pak, D. (2016). A game theoretic optimization method for energy efficient global connectivity in hybrid wireless sensor networks. Sensors, 16(9), 1380.CrossRef Lee, J., & Pak, D. (2016). A game theoretic optimization method for energy efficient global connectivity in hybrid wireless sensor networks. Sensors, 16(9), 1380.CrossRef
30.
go back to reference Zaheeruddin, D., & Lobiyal, A. (2017). Pathak, Energy-aware bee colony approach to extend lifespan of wireless sensor network, Australian Journal of Multi-Disciplinary. Engineering, 13(1), 29–46. Zaheeruddin, D., & Lobiyal, A. (2017). Pathak, Energy-aware bee colony approach to extend lifespan of wireless sensor network, Australian Journal of Multi-Disciplinary. Engineering, 13(1), 29–46.
31.
go back to reference Guntupalli, L., Martinez-Bauset, J., & Li, F. Y. (2018). Performance of frame transmissions and event-triggered sleeping in duty cycled wsn’s with error-prone wireless links. Computer Networks, 134, 215–227.CrossRef Guntupalli, L., Martinez-Bauset, J., & Li, F. Y. (2018). Performance of frame transmissions and event-triggered sleeping in duty cycled wsn’s with error-prone wireless links. Computer Networks, 134, 215–227.CrossRef
32.
go back to reference Su, S., & Zhao, S. (2018). An optimal clustering mechanism based on fuzzy-c means for wireless sensor networks. Sustainable Computing: Informatics and Systems, 18, 127–134. Su, S., & Zhao, S. (2018). An optimal clustering mechanism based on fuzzy-c means for wireless sensor networks. Sustainable Computing: Informatics and Systems, 18, 127–134.
33.
go back to reference Nassar, J., Berthome, M., Dubrulle, J., Gouvy, N., Mitton, N., & Quoitin, B. (2018). Multiple instances qos routing in rpl: Application to smart grids. Sensors, 18(8), 2472.CrossRef Nassar, J., Berthome, M., Dubrulle, J., Gouvy, N., Mitton, N., & Quoitin, B. (2018). Multiple instances qos routing in rpl: Application to smart grids. Sensors, 18(8), 2472.CrossRef
34.
go back to reference Liao, Y., Qi, H., & Li, W. (2012). Load-balanced clustering algorithm with distributed self-organization for wireless sensor networks. IEEE Sensors Journal, 13(5), 1498–1506.CrossRef Liao, Y., Qi, H., & Li, W. (2012). Load-balanced clustering algorithm with distributed self-organization for wireless sensor networks. IEEE Sensors Journal, 13(5), 1498–1506.CrossRef
35.
go back to reference Behzad, M., Javaid, M., Parahca, M., & Khan, S. (2017). Distributed PCA and consensus based energy efficient routing protocol for wsn’s. Journal of Information Science and Engineering, 33(5), 1267–1283. Behzad, M., Javaid, M., Parahca, M., & Khan, S. (2017). Distributed PCA and consensus based energy efficient routing protocol for wsn’s. Journal of Information Science and Engineering, 33(5), 1267–1283.
36.
go back to reference Ma, C., Wang, L., Xu, J., Qin, Z., Shu, L., & Wu, D. (2013). An overlapping clustering approach for routing in wireless sensor networks. In 2013 IEEE Wireless Communications and Networking Conference (WCNC), (pp. 4375–4380), IEEE. Ma, C., Wang, L., Xu, J., Qin, Z., Shu, L., & Wu, D. (2013). An overlapping clustering approach for routing in wireless sensor networks. In 2013 IEEE Wireless Communications and Networking Conference (WCNC), (pp. 4375–4380), IEEE.
37.
go back to reference Li, D., Liu, H., & Feng, J. (2009). Sensor coverage in wireless sensor networks, Wireless Networks: Research Technology and Applications, 3–31. Li, D., Liu, H., & Feng, J. (2009). Sensor coverage in wireless sensor networks, Wireless Networks: Research Technology and Applications, 3–31.
38.
go back to reference D. C. Hoang, R. Kumar and S. K. Panda, "Fuzzy C-Means clustering protocol for Wireless Sensor Networks," 2010 IEEE International Symposium on Industrial Electronics, 2010, pp. 3477-3482, doi: 10.1109/ISIE.2010.5637779. D. C. Hoang, R. Kumar and S. K. Panda, "Fuzzy C-Means clustering protocol for Wireless Sensor Networks," 2010 IEEE International Symposium on Industrial Electronics, 2010, pp. 3477-3482, doi: 10.1109/ISIE.2010.5637779.
Metadata
Title
Density Based Fuzzy C Means Clustering to prolong Network  Lifetime in Smart Grids
Authors
K. Deepa
Zaheeruddin
Shruti Vashist
Publication date
10-05-2021
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 3/2021
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-08371-w

Other articles of this Issue 3/2021

Wireless Personal Communications 3/2021 Go to the issue

OriginalPaper

Personal Cloud P2P