Skip to main content
Top

2023 | OriginalPaper | Chapter

34. Density Peaks Clustering Algorithm for Manifold Data Based on Geodesic Distance and Weighted Nearest Neighbor Similarity

Authors : Xin-Yue Hu, Jia-Zheng Hou, Run-Xiu Wu, Jia Zhao

Published in: Advances in Smart Vehicular Technology, Transportation, Communication and Applications

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The common forms of manifold data are curvilinear, spiral, and circular. Density peak clustering algorithm (DPC) is difficult to find the cluster center accurately when facing manifold dataset, and it is easy to assign the samples belonging to the same cluster to other cluster centers which are closer to it, resulting in poor clustering accuracy. To this end, Density Peak Clustering Algorithm for Manifold Data Based on Geodesic Distance and Weighted Nearest Neighbor Similarity (DPC-GWNN) is provided in this paper. The DPC-GWNN algorithm firstly combines the weighted K-nearest neighbors to redefine the local density in order to find the clustering center more accurately; secondly, the geodesic distance is used to calculate the sample spacing instead of the Euclidean distance, so that the samples on the same manifold cluster are closer to each other and the samples between different manifold clusters are farther apart; finally, the shared nearest neighbor Finally, the new inter-sample similarity is defined using the shared nearest neighbor and the natural nearest neighbor weighted similarity to fully integrate the local information of samples and avoid the cascading effect of errors, thus achieving a better clustering effect. In this paper, we compare the DPC-GWNN algorithm with other algorithms and find that the DPC-GWNN algorithm can accurately identify the manifold class clusters and find the cluster center to achieve accurate clustering.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Xu, J., Lou, H.: X-strip Y-band location clustering algorithm for network topology inference. J. Inf. Hiding Multimed. Signal Process. 12(4), 175–185 (2021) Xu, J., Lou, H.: X-strip Y-band location clustering algorithm for network topology inference. J. Inf. Hiding Multimed. Signal Process. 12(4), 175–185 (2021)
2.
go back to reference Pan, J.S., Hu, P.: Novel parallel heterogeneous meta-heuristic and its communication strategies for the prediction of wind power. Processes 7(11), 845 (2019)CrossRef Pan, J.S., Hu, P.: Novel parallel heterogeneous meta-heuristic and its communication strategies for the prediction of wind power. Processes 7(11), 845 (2019)CrossRef
3.
go back to reference Zhang, S., Su, X., Jiang, X.: A traffic prediction method of bicycle-sharing based on long and short term memory network. J. Netw. Intell. 4(2), 17–29 (2019) Zhang, S., Su, X., Jiang, X.: A traffic prediction method of bicycle-sharing based on long and short term memory network. J. Netw. Intell. 4(2), 17–29 (2019)
4.
go back to reference Wang, J., Cui, J., Chen, C.: A prediction method of consumer buying behavior based on attention mechanism and CNN-BiLSTM. J. Netw. Intell. 7(2), 375–385 (2022) Wang, J., Cui, J., Chen, C.: A prediction method of consumer buying behavior based on attention mechanism and CNN-BiLSTM. J. Netw. Intell. 7(2), 375–385 (2022)
5.
go back to reference Ma, S., Cui, J.: An improved Bi-LSTM EEG emotion recognition algorithm. J. Netw. Intell. 7(3), 623–639 (2022) Ma, S., Cui, J.: An improved Bi-LSTM EEG emotion recognition algorithm. J. Netw. Intell. 7(3), 623–639 (2022)
6.
go back to reference Wu, T., Lin, J.: An efficient algorithm for fuzzy frequent, itemset mining. J. Intell. Fuzzy Syst. 38(5), 5787–5797 (2020)CrossRef Wu, T., Lin, J.: An efficient algorithm for fuzzy frequent, itemset mining. J. Intell. Fuzzy Syst. 38(5), 5787–5797 (2020)CrossRef
7.
go back to reference Wu, T., Lin, C.: A grid-based swarm intelligence algorithm for privacy-preserving data mining. Appl. Sci. 9(4), 774 (2019)MathSciNetCrossRef Wu, T., Lin, C.: A grid-based swarm intelligence algorithm for privacy-preserving data mining. Appl. Sci. 9(4), 774 (2019)MathSciNetCrossRef
8.
go back to reference Chen, C., Chen, L.: Discovering high utility-occupancy patterns from uncertain data. Inf. Sci. 546, 1208–1229 (2021)MathSciNetCrossRef Chen, C., Chen, L.: Discovering high utility-occupancy patterns from uncertain data. Inf. Sci. 546, 1208–1229 (2021)MathSciNetCrossRef
9.
go back to reference Zhang, F., Wu, T.: Human motion recognition based on SVM in VR art media interaction environment. HCIS 9(1), 1–15 (2019)MathSciNet Zhang, F., Wu, T.: Human motion recognition based on SVM in VR art media interaction environment. HCIS 9(1), 1–15 (2019)MathSciNet
10.
go back to reference Wu, H., Xiao, R.: Flexible wolf pack algorithm for dynamic multidimensional knapsack problems. Research 2020 (2020) Wu, H., Xiao, R.: Flexible wolf pack algorithm for dynamic multidimensional knapsack problems. Research 2020 (2020)
11.
go back to reference Wu, H., Xue, J., Xiao, R.: Uncertain bilevel knapsack problem based on improved binary wolf pack algorithm. Front. Inf. Technol. Electron. Eng. 21(9), 1356–1368 (2020)CrossRef Wu, H., Xue, J., Xiao, R.: Uncertain bilevel knapsack problem based on improved binary wolf pack algorithm. Front. Inf. Technol. Electron. Eng. 21(9), 1356–1368 (2020)CrossRef
12.
go back to reference Kumar, S., Damaraju, A.: LSTM network for transportation mode detection. J. Internet Technol. 22(4), 891–902 (2021)CrossRef Kumar, S., Damaraju, A.: LSTM network for transportation mode detection. J. Internet Technol. 22(4), 891–902 (2021)CrossRef
13.
go back to reference Karim, M.R., Beyan, O.: Deep learning-based clustering approaches for bioinformatics. Brief. Bioinform. 22(1), 393–415 (2021)CrossRef Karim, M.R., Beyan, O.: Deep learning-based clustering approaches for bioinformatics. Brief. Bioinform. 22(1), 393–415 (2021)CrossRef
14.
go back to reference Liang, T.M., Chiu, M.S.: Applying image processing technology to face recognition. J. Inf. Hiding Multimed. Signal Process. 13(2), 106–112 (2022) Liang, T.M., Chiu, M.S.: Applying image processing technology to face recognition. J. Inf. Hiding Multimed. Signal Process. 13(2), 106–112 (2022)
15.
go back to reference Kang, L., Chen, R.S.: Selecting hyper-parameters of Gaussian process regression based on non-inertial particle swarm optimization in internet of things. IEEE Access 7, 59504–59513 (2019)CrossRef Kang, L., Chen, R.S.: Selecting hyper-parameters of Gaussian process regression based on non-inertial particle swarm optimization in internet of things. IEEE Access 7, 59504–59513 (2019)CrossRef
16.
go back to reference Pan, J., Chai, Q.W.: 3-D terrain node coverage of wireless sensor network using enhanced black hole algorithm. Sensors 20(8), 2411 (2020)CrossRef Pan, J., Chai, Q.W.: 3-D terrain node coverage of wireless sensor network using enhanced black hole algorithm. Sensors 20(8), 2411 (2020)CrossRef
17.
go back to reference Ng, R.T., Han, J.: CLARANS: a method for clustering objects for spatial data mining. IEEE Trans. Knowl. Data Eng. 14(5), 1003–1016 (2002)CrossRef Ng, R.T., Han, J.: CLARANS: a method for clustering objects for spatial data mining. IEEE Trans. Knowl. Data Eng. 14(5), 1003–1016 (2002)CrossRef
18.
go back to reference Khan, I., Luo, Z.: Nonnegative matrix factorization based consensus for clusterings with a variable number of clusters. IEEE Access 6, 73158–73169 (2018)CrossRef Khan, I., Luo, Z.: Nonnegative matrix factorization based consensus for clusterings with a variable number of clusters. IEEE Access 6, 73158–73169 (2018)CrossRef
19.
go back to reference Likas, A., Vlassis, N.: The global k-means clustering algorithm. Pattern Recogn. 36(2), 451–461 (2003)CrossRef Likas, A., Vlassis, N.: The global k-means clustering algorithm. Pattern Recogn. 36(2), 451–461 (2003)CrossRef
20.
go back to reference Cheng, D., Zhu, Q.: A novel cluster validity index based on local cores. IEEE Trans. Neural Netw. Learn. Syst. 30(4), 985–999 (2018)CrossRef Cheng, D., Zhu, Q.: A novel cluster validity index based on local cores. IEEE Trans. Neural Netw. Learn. Syst. 30(4), 985–999 (2018)CrossRef
21.
go back to reference Karypis, G., Han, E.H.: Chameleon: hierarchical clustering using dynamic modeling. Computer 32(8), 68–75 (1999)CrossRef Karypis, G., Han, E.H.: Chameleon: hierarchical clustering using dynamic modeling. Computer 32(8), 68–75 (1999)CrossRef
22.
go back to reference Duan, L., Xu, L.: A local-density based spatial clustering algorithm with noise. Inf. Syst. 32(7), 978–986 (2007)CrossRef Duan, L., Xu, L.: A local-density based spatial clustering algorithm with noise. Inf. Syst. 32(7), 978–986 (2007)CrossRef
23.
go back to reference Sharma, A., Sharma, A.: KNN-DBSCAN: Using k-nearest neighbor information for parameter-free density-based clustering. In: 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), pp.787–792. IEEE, Kerala India (2017) Sharma, A., Sharma, A.: KNN-DBSCAN: Using k-nearest neighbor information for parameter-free density-based clustering. In: 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), pp.787–792. IEEE, Kerala India (2017)
24.
go back to reference Khan, I., Huang, J.Z.: Incremental density-based ensemble clustering over evolving data streams. Neurocomputing 191, 34–43 (2016)CrossRef Khan, I., Huang, J.Z.: Incremental density-based ensemble clustering over evolving data streams. Neurocomputing 191, 34–43 (2016)CrossRef
25.
go back to reference Patel, K.A.: An efficient and scalable density-based clustering algorithm for normalize data. Procedia Comput. Sci. 92, 136–141 (2016)CrossRef Patel, K.A.: An efficient and scalable density-based clustering algorithm for normalize data. Procedia Comput. Sci. 92, 136–141 (2016)CrossRef
26.
go back to reference Mehmood, R., Bie, R.: Adaptive cutoff distance: clustering by fast search and find of density peaks. J. Intell. Fuzzy Syst. 31(5), 2619–2628 (2016)CrossRef Mehmood, R., Bie, R.: Adaptive cutoff distance: clustering by fast search and find of density peaks. J. Intell. Fuzzy Syst. 31(5), 2619–2628 (2016)CrossRef
27.
go back to reference Zhao, J., Tang, J.: Density peaks clustering based on circular partition and grid similarity. Concurr. Comput. Pract. Exp. 32(7), e5567 (2020)CrossRef Zhao, J., Tang, J.: Density peaks clustering based on circular partition and grid similarity. Concurr. Comput. Pract. Exp. 32(7), e5567 (2020)CrossRef
28.
go back to reference Fan, T., Yao, Z.: Density peaks clustering based on k-nearest neighbors sharing. Concurr. Comput. Pract. Exp. 33(5), e5993 (2021)CrossRef Fan, T., Yao, Z.: Density peaks clustering based on k-nearest neighbors sharing. Concurr. Comput. Pract. Exp. 33(5), e5993 (2021)CrossRef
29.
go back to reference Li, C., Zhang Y.: Density peak clustering based on relative density optimization. Math. Probl. Eng. 2020 (2020) Li, C., Zhang Y.: Density peak clustering based on relative density optimization. Math. Probl. Eng. 2020 (2020)
30.
go back to reference Zhao, J., Tang, J.: Improved density peaks clustering based on firefly algorithm. Int. J. Bio-Inspir. Comput. 15(1), 24–42 (2020)MathSciNetCrossRef Zhao, J., Tang, J.: Improved density peaks clustering based on firefly algorithm. Int. J. Bio-Inspir. Comput. 15(1), 24–42 (2020)MathSciNetCrossRef
31.
go back to reference Zhao, J., Chen, D.: Multi-strategy ensemble firefly algorithm with equilibrium of convergence and diversity. Appl. Soft Comput. 123, 108938 (2022)CrossRef Zhao, J., Chen, D.: Multi-strategy ensemble firefly algorithm with equilibrium of convergence and diversity. Appl. Soft Comput. 123, 108938 (2022)CrossRef
32.
go back to reference Xie, J., Gao, H.: Robust clustering by detecting density peaks and assigning points based on fuzzy weighted K-nearest neighbors. Inf. Sci. 354, 19–40 (2016)CrossRef Xie, J., Gao, H.: Robust clustering by detecting density peaks and assigning points based on fuzzy weighted K-nearest neighbors. Inf. Sci. 354, 19–40 (2016)CrossRef
33.
go back to reference Lotfi, A., Moradi, P.: Density peaks clustering based on density backbone and fuzzy neighborhood. Pattern Recogn. 107, 107449 (2020)CrossRef Lotfi, A., Moradi, P.: Density peaks clustering based on density backbone and fuzzy neighborhood. Pattern Recogn. 107, 107449 (2020)CrossRef
34.
go back to reference Yu, D., Liu, G.: Density peaks clustering based on weighted local density sequence and nearest neighbor assignment. IEEE Access 7, 34301–34317 (2019)CrossRef Yu, D., Liu, G.: Density peaks clustering based on weighted local density sequence and nearest neighbor assignment. IEEE Access 7, 34301–34317 (2019)CrossRef
35.
go back to reference Du, M., Ding, S.: Density peaks clustering using geodesic distances. Int. J. Mach. Learn. Cybern. 9(8), 1335–1349 (2018)CrossRef Du, M., Ding, S.: Density peaks clustering using geodesic distances. Int. J. Mach. Learn. Cybern. 9(8), 1335–1349 (2018)CrossRef
36.
go back to reference Vinh, N.X., Epps, J.: Information theoretic measures for clusterings comparison: is a correction for chance necessary? In: Proceedings of the 26th annual international conference on machine learning, pp.1073–1080. Association for Computing Machinery, Montreal Quebec Canada (2009). Vinh, N.X., Epps, J.: Information theoretic measures for clusterings comparison: is a correction for chance necessary? In: Proceedings of the 26th annual international conference on machine learning, pp.1073–1080. Association for Computing Machinery, Montreal Quebec Canada (2009).
37.
go back to reference Fowlkes, E.B., Mallows, C.L.: A method for comparing two hierarchical clusterings. J. Am. Stat. Assoc. 78(383), 553–569 (1983)CrossRefMATH Fowlkes, E.B., Mallows, C.L.: A method for comparing two hierarchical clusterings. J. Am. Stat. Assoc. 78(383), 553–569 (1983)CrossRefMATH
Metadata
Title
Density Peaks Clustering Algorithm for Manifold Data Based on Geodesic Distance and Weighted Nearest Neighbor Similarity
Authors
Xin-Yue Hu
Jia-Zheng Hou
Run-Xiu Wu
Jia Zhao
Copyright Year
2023
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-0848-6_35

Premium Partner