Skip to main content
Top
Published in: Optical and Quantum Electronics 1/2024

01-01-2024

Design and analysis of inverse tapered silicon nitride waveguide for flat and highly coherent supercontinuum generation in the mid-infrared

Authors: M. R. Karim, Nayem Al Kayed, Rakayet Rafi, B. M. A. Rahman

Published in: Optical and Quantum Electronics | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We numerically investigate a promising mid-infrared supercontinuum (SC) source through the design of an on-chip complementary metal oxide semiconductor compatible 3-mm-long inverse tapered waveguide made using stoichiometric silicon nitride (Si\(_3\)N\(_4\)) as the core and silica (SiO\(_2\)) glass as both the upper and lower claddings. The proposed waveguide is designed for pumping only in the anomalous dispersion regime. To explore SC generation in terms of spectral flatness and mid-infrared expansion, three different types of inverse tapered geometry are analyzed. These are inverse linear tapering, hyperbolic tapering, and parabolic tapering approaches. The proposed structures are optimized by varying their width based on the tapering variation coefficient along the pulse propagation direction. Keeping the waveguide thickness (height) constant at 2 \(\upmu\)m, each geometry is engineered by varying widths between 1.2 and 0.75 \(\upmu\)m in the mode of inverse tapering approach. Using a pump at 1.55 \(\upmu\)m with a peak power of 8 kW, SC generation is explored in all tapering geometries with an ultrashort pulse of 50 fs. The largest SC spectra covering a region from 0.76 \(\upmu\)m to beyond 6.67 \(\upmu\)m have been realized with a good spectral flatness by the parabolic-type taper among the three tapering geometries considered here. To the best of the authors’ knowledge, this is the first time report of broadband SC coverage through numerical study in the region of mid-infrared by Si\(_3\)N\(_4\) planar design through a tapering approach. After spectral broadening up to 3.5 \(\upmu\)m with a conventional uniform design, a dip has been observed at the middle of the spectra which gradually becomes large with further dimensional variations of a typical uniform waveguide. However, such spectral dip problems can largely be eliminated through selective spectral enhancement by applying an inverse tapering approach. The coherence calculation of the predicted SC coverages also shows a high coherence at the proposed tapers output. The proposed inverse tapered planar designs show a significant improvement not only in mid-infrared spectral expansion but also in spectral flatness compared to the axially unvarying waveguide design.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abrardi, L., Martín-López, S., Carrasco-Sanz, A., Corredera, P., Hernanz, M.L., González-Herráez, M.: Optimized all-fiber supercontinuum source at 1.3 \(\upmu\)m generated in a stepwise dispersion-decreasing-fiber arrangement. J. Lightw. Technol. 25(8), 2098–2102 (2007)ADS Abrardi, L., Martín-López, S., Carrasco-Sanz, A., Corredera, P., Hernanz, M.L., González-Herráez, M.: Optimized all-fiber supercontinuum source at 1.3 \(\upmu\)m generated in a stepwise dispersion-decreasing-fiber arrangement. J. Lightw. Technol. 25(8), 2098–2102 (2007)ADS
go back to reference Agrawal, G.P.: Nonlinear fiber optics. In: Nonlinear Science at the Dawn of the 21st Century, pp. 195–211. Springer (2000) Agrawal, G.P.: Nonlinear fiber optics. In: Nonlinear Science at the Dawn of the 21st Century, pp. 195–211. Springer (2000)
go back to reference Ahmad, H., Karim, M.R., Rahman, B.M.A.: Dispersion-engineered silicon nitride waveguides for mid-infrared supercontinuum generation covering the wavelength range 0.8–6.5 \(\upmu\)m. Laser Phys. 29(2), 025,301 (2019) Ahmad, H., Karim, M.R., Rahman, B.M.A.: Dispersion-engineered silicon nitride waveguides for mid-infrared supercontinuum generation covering the wavelength range 0.8–6.5 \(\upmu\)m. Laser Phys. 29(2), 025,301 (2019)
go back to reference Al Kayed, N., Karim, M.R., Hussain, A., Jahan, N., Rahman, B.M.A.: Wideband mid-infrared supercontinuum generation using inverse tapered silicon nitride waveguide. In: 2021 IEEE International Conference on Telecommunications and Photonics (ICTP), pp. 1–5. IEEE (2021) Al Kayed, N., Karim, M.R., Hussain, A., Jahan, N., Rahman, B.M.A.: Wideband mid-infrared supercontinuum generation using inverse tapered silicon nitride waveguide. In: 2021 IEEE International Conference on Telecommunications and Photonics (ICTP), pp. 1–5. IEEE (2021)
go back to reference Almeida, V.R., Barrios, C.A., Panepucci, R.R., Lipson, M.: All-optical control of light on a silicon chip. Nature 431(7012), 1081–1084 (2004)PubMedADS Almeida, V.R., Barrios, C.A., Panepucci, R.R., Lipson, M.: All-optical control of light on a silicon chip. Nature 431(7012), 1081–1084 (2004)PubMedADS
go back to reference Baehr-Jones, T., Pinguet, T., Guo-Qiang, P.L., Danziger, S., Prather, D., Hochberg, M.: Myths and rumours of silicon photonics. Nat. Photonics 6(4), 206–208 (2012)ADS Baehr-Jones, T., Pinguet, T., Guo-Qiang, P.L., Danziger, S., Prather, D., Hochberg, M.: Myths and rumours of silicon photonics. Nat. Photonics 6(4), 206–208 (2012)ADS
go back to reference Bass, M., Van Stryland, E.W., Williams, D.R., Wolfe, W.L.: Handbook of Optics, vol. 2. McGraw-Hill New York (1995) Bass, M., Van Stryland, E.W., Williams, D.R., Wolfe, W.L.: Handbook of Optics, vol. 2. McGraw-Hill New York (1995)
go back to reference Belli, F., Abdolvand, A., Chang, W., Travers, J.C., Russell, P.S.J.: Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber. Optica 2(4), 292–300 (2015)ADS Belli, F., Abdolvand, A., Chang, W., Travers, J.C., Russell, P.S.J.: Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber. Optica 2(4), 292–300 (2015)ADS
go back to reference Ciret, C., Gorza, S.P.: Generation of ultra-broadband coherent supercontinua in tapered and dispersion-managed silicon nanophotonic waveguides. JOSA B 34(6), 1156–1162 (2017)ADS Ciret, C., Gorza, S.P.: Generation of ultra-broadband coherent supercontinua in tapered and dispersion-managed silicon nanophotonic waveguides. JOSA B 34(6), 1156–1162 (2017)ADS
go back to reference Corwin, K.L., Newbury, N.R., Dudley, J.M., Coen, S., Diddams, S.A., Weber, K., Windeler, R.: Fundamental noise limitations to supercontinuum generation in microstructure fiber. Phys. Rev. Lett. 90(11), 113904 (2003)PubMedADS Corwin, K.L., Newbury, N.R., Dudley, J.M., Coen, S., Diddams, S.A., Weber, K., Windeler, R.: Fundamental noise limitations to supercontinuum generation in microstructure fiber. Phys. Rev. Lett. 90(11), 113904 (2003)PubMedADS
go back to reference Dave, U.D., Ciret, C., Gorza, S.P., Combrie, S., De Rossi, A., Raineri, F., Roelkens, G., Kuyken, B.: Dispersive-wave-based octave-spanning supercontinuum generation in InGaP membrane waveguides on a silicon substrate. Opt. Lett. 40(15), 3584–3587 (2015)PubMedADS Dave, U.D., Ciret, C., Gorza, S.P., Combrie, S., De Rossi, A., Raineri, F., Roelkens, G., Kuyken, B.: Dispersive-wave-based octave-spanning supercontinuum generation in InGaP membrane waveguides on a silicon substrate. Opt. Lett. 40(15), 3584–3587 (2015)PubMedADS
go back to reference Duchesne, D., Peccianti, M., Lamont, M.R., Ferrera, M., Razzari, L., Légaré, F., Morandotti, R., Chu, S., Little, B.E., Moss, D.J.: Supercontinuum generation in a high index doped silica glass spiral waveguide. Opt. Express 18(2), 923–930 (2010)PubMedADS Duchesne, D., Peccianti, M., Lamont, M.R., Ferrera, M., Razzari, L., Légaré, F., Morandotti, R., Chu, S., Little, B.E., Moss, D.J.: Supercontinuum generation in a high index doped silica glass spiral waveguide. Opt. Express 18(2), 923–930 (2010)PubMedADS
go back to reference Dudley, J.M., Genty, G., Coen, S.: Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78(4), 1135–1184 (2006)ADS Dudley, J.M., Genty, G., Coen, S.: Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78(4), 1135–1184 (2006)ADS
go back to reference Epping, J.P., Hellwig, T., Hoekman, M., Mateman, R., Leinse, A., Heideman, R.G., van Rees, A., van der Slot, P.J.M., Lee, C.J., Fallnich, C., et al.: On-chip visible-to-infrared supercontinuum generation with more than 495 thz spectral bandwidth. Opt. Express 23(15), 19596–19604 (2015)PubMedADS Epping, J.P., Hellwig, T., Hoekman, M., Mateman, R., Leinse, A., Heideman, R.G., van Rees, A., van der Slot, P.J.M., Lee, C.J., Fallnich, C., et al.: On-chip visible-to-infrared supercontinuum generation with more than 495 thz spectral bandwidth. Opt. Express 23(15), 19596–19604 (2015)PubMedADS
go back to reference Hartl, I., Li, X.D., Chudoba, C., Ghanta, R.K., Ko, T.H., Fujimoto, J.G., Ranka, J.K., Windeler, R.S.: Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber. Opt. Lett. 26(9), 608–610 (2001)PubMedADS Hartl, I., Li, X.D., Chudoba, C., Ghanta, R.K., Ko, T.H., Fujimoto, J.G., Ranka, J.K., Windeler, R.S.: Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber. Opt. Lett. 26(9), 608–610 (2001)PubMedADS
go back to reference Hochberg, M., Baehr-Jones, T.: Towards fabless silicon photonics. Nat. Photonics 4(8), 492–494 (2010)ADS Hochberg, M., Baehr-Jones, T.: Towards fabless silicon photonics. Nat. Photonics 4(8), 492–494 (2010)ADS
go back to reference Hu, J., Menyuk, C.R., Shaw, L.B., Sanghera, J.S., Aggarwal, I.D.: Maximizing the bandwidth of supercontinuum generation in As\(_2\)Se\(_3\) chalcogenide fibers. Opt. Express 18(7), 6722–6739 (2010)PubMedADS Hu, J., Menyuk, C.R., Shaw, L.B., Sanghera, J.S., Aggarwal, I.D.: Maximizing the bandwidth of supercontinuum generation in As\(_2\)Se\(_3\) chalcogenide fibers. Opt. Express 18(7), 6722–6739 (2010)PubMedADS
go back to reference Hu, H., Li, W., Dutta, N.K.: Supercontinuum generation in dispersion-managed tapered-rib waveguide. Appl. Opt. 52(30), 7336–7341 (2013)PubMedADS Hu, H., Li, W., Dutta, N.K.: Supercontinuum generation in dispersion-managed tapered-rib waveguide. Appl. Opt. 52(30), 7336–7341 (2013)PubMedADS
go back to reference Hu, H., Zhang, X., Li, W., Dutta, N.K.: Simulation of octave spanning mid-infrared supercontinuum generation in dispersion-varying planar waveguides. Appl. Opt. 54(11), 3448–3454 (2015)PubMedADS Hu, H., Zhang, X., Li, W., Dutta, N.K.: Simulation of octave spanning mid-infrared supercontinuum generation in dispersion-varying planar waveguides. Appl. Opt. 54(11), 3448–3454 (2015)PubMedADS
go back to reference Jiang, X., Joly, N.Y., Finger, M.A., Babic, F., Wong, G.K.L., Travers, J.C., Russell, P.S.J.: Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre. Nat. Photonics 9(2), 133–139 (2015)ADS Jiang, X., Joly, N.Y., Finger, M.A., Babic, F., Wong, G.K.L., Travers, J.C., Russell, P.S.J.: Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre. Nat. Photonics 9(2), 133–139 (2015)ADS
go back to reference Johnson, A.R., Mayer, A.S., Klenner, A., Luke, K., Lamb, E.S., Lamont, M.R.E., Joshi, C., Okawachi, Y., Wise, F.W., Lipson, M., et al.: Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide. Opt. Lett. 40(21), 5117–5120 (2015)PubMedADS Johnson, A.R., Mayer, A.S., Klenner, A., Luke, K., Lamb, E.S., Lamont, M.R.E., Joshi, C., Okawachi, Y., Wise, F.W., Lipson, M., et al.: Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide. Opt. Lett. 40(21), 5117–5120 (2015)PubMedADS
go back to reference Jones, D.J., Diddams, S.A., Ranka, J.K., Stentz, A., Windeler, R.S., Hall, J.L., Cundiff, S.T.: Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288(5466), 635–639 (2000)PubMedADS Jones, D.J., Diddams, S.A., Ranka, J.K., Stentz, A., Windeler, R.S., Hall, J.L., Cundiff, S.T.: Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288(5466), 635–639 (2000)PubMedADS
go back to reference Karim, M.R., Rahman, B.M.A., Agrawal, G.P.: Mid-infrared supercontinuum generation using dispersion-engineered Ge\(_{11.5}\)As\(_{24}\)Se\(_{64.5}\) chalcogenide channel waveguide. Opt. Express 23(5), 6903–6914 (2015)PubMedADS Karim, M.R., Rahman, B.M.A., Agrawal, G.P.: Mid-infrared supercontinuum generation using dispersion-engineered Ge\(_{11.5}\)As\(_{24}\)Se\(_{64.5}\) chalcogenide channel waveguide. Opt. Express 23(5), 6903–6914 (2015)PubMedADS
go back to reference Karim, M.R., Al Kayed, N., Hossain, M.R., Rahman, B.M.A.: Study of low-peak-power highly coherent broadband supercontinuum generation through a dispersion-engineered si-rich silicon nitride waveguide. Appl. Opt. 59(20), 5948–5956 (2020)PubMedADS Karim, M.R., Al Kayed, N., Hossain, M.R., Rahman, B.M.A.: Study of low-peak-power highly coherent broadband supercontinuum generation through a dispersion-engineered si-rich silicon nitride waveguide. Appl. Opt. 59(20), 5948–5956 (2020)PubMedADS
go back to reference Karim, M.R., Al Kayed, N., Jahan, N., Alam, M.S., Rahman, B.M.A.: Study of highly coherent mid-infrared supercontinuum generation in CMOS compatible Si-Rich SiN tapered waveguide. J. Lightw. Technol. 40(13), 4300–4310 (2022)ADS Karim, M.R., Al Kayed, N., Jahan, N., Alam, M.S., Rahman, B.M.A.: Study of highly coherent mid-infrared supercontinuum generation in CMOS compatible Si-Rich SiN tapered waveguide. J. Lightw. Technol. 40(13), 4300–4310 (2022)ADS
go back to reference Kuyken, B., Leo, F., Clemmen, S., Dave, U., Van Laer, R., Ideguchi, T., Zhao, H., Liu, X., Safioui, J., Coen, S., et al.: Nonlinear optical interactions in silicon waveguides. Nanophotonics 6(2), 377–392 (2017) Kuyken, B., Leo, F., Clemmen, S., Dave, U., Van Laer, R., Ideguchi, T., Zhao, H., Liu, X., Safioui, J., Coen, S., et al.: Nonlinear optical interactions in silicon waveguides. Nanophotonics 6(2), 377–392 (2017)
go back to reference Lacava, C., Stankovic, S., Khokhar, A.Z., Bucio, T.D., Gardes, F., Reed, G.T., Richardson, D.J., Petropoulos, P.: Si-rich silicon nitride for nonlinear signal processing applications. Sci. Rep. 7(1), 1–13 (2017) Lacava, C., Stankovic, S., Khokhar, A.Z., Bucio, T.D., Gardes, F., Reed, G.T., Richardson, D.J., Petropoulos, P.: Si-rich silicon nitride for nonlinear signal processing applications. Sci. Rep. 7(1), 1–13 (2017)
go back to reference Lafforgue, C., Guerber, S., Ramirez, J.M., Marcaud, G., Alonso-Ramos, C., Le Roux, X., Marris-Morini, D., Cassan, E., Baudot, C., Boeuf, F., et al.: Broadband supercontinuum generation in nitrogen-rich silicon nitride waveguides using a 300 mm industrial platform. Photonics Res. 8(3), 352–358 (2020) Lafforgue, C., Guerber, S., Ramirez, J.M., Marcaud, G., Alonso-Ramos, C., Le Roux, X., Marris-Morini, D., Cassan, E., Baudot, C., Boeuf, F., et al.: Broadband supercontinuum generation in nitrogen-rich silicon nitride waveguides using a 300 mm industrial platform. Photonics Res. 8(3), 352–358 (2020)
go back to reference Lamont, M.R.E., Luther-Davies, B., Choi, D.Y., Madden, S., Eggleton, B.J.: Supercontinuum generation in dispersion engineered highly nonlinear (\(\gamma\)= 10/w/m) As\(_2\)S\(_3\) chalcogenide planar waveguide. Opt. Express 16(19), 14938–14944 (2008)PubMedADS Lamont, M.R.E., Luther-Davies, B., Choi, D.Y., Madden, S., Eggleton, B.J.: Supercontinuum generation in dispersion engineered highly nonlinear (\(\gamma\)= 10/w/m) As\(_2\)S\(_3\) chalcogenide planar waveguide. Opt. Express 16(19), 14938–14944 (2008)PubMedADS
go back to reference Leo, F., Gorza, S.P., Safioui, J., Kockaert, P., Coen, S., Dave, U., Kuyken, B., Roelkens, G.: Dispersive wave emission and supercontinuum generation in a silicon wire waveguide pumped around the 1550 nm telecommunication wavelength. Opt. Lett. 39(12), 3623–3626 (2014)PubMedADS Leo, F., Gorza, S.P., Safioui, J., Kockaert, P., Coen, S., Dave, U., Kuyken, B., Roelkens, G.: Dispersive wave emission and supercontinuum generation in a silicon wire waveguide pumped around the 1550 nm telecommunication wavelength. Opt. Lett. 39(12), 3623–3626 (2014)PubMedADS
go back to reference Leo, F., Safioui, J., Kuyken, B., Roelkens, G., Gorza, S.P.: Generation of coherent supercontinuum in a-Si: H waveguides: experiment and modeling based on measured dispersion profile. Opt. Express 22(23), 28997–29007 (2014)PubMedADS Leo, F., Safioui, J., Kuyken, B., Roelkens, G., Gorza, S.P.: Generation of coherent supercontinuum in a-Si: H waveguides: experiment and modeling based on measured dispersion profile. Opt. Express 22(23), 28997–29007 (2014)PubMedADS
go back to reference Leo, F., Gorza, S.P., Coen, S., Kuyken, B., Roelkens, G.: Coherent supercontinuum generation in a silicon photonic wire in the telecommunication wavelength range. Opt. Lett. 40(1), 123–126 (2015)PubMedADS Leo, F., Gorza, S.P., Coen, S., Kuyken, B., Roelkens, G.: Coherent supercontinuum generation in a silicon photonic wire in the telecommunication wavelength range. Opt. Lett. 40(1), 123–126 (2015)PubMedADS
go back to reference Liu, X., Pu, M., Zhou, B., Krückel, C.J., Fülöp, A., Bache, M., et al.: Octave-spanning supercontinuum generation in a silicon-rich nitride waveguide. Opt. Lett. 41(12), 2719–2722 (2016)PubMedADS Liu, X., Pu, M., Zhou, B., Krückel, C.J., Fülöp, A., Bache, M., et al.: Octave-spanning supercontinuum generation in a silicon-rich nitride waveguide. Opt. Lett. 41(12), 2719–2722 (2016)PubMedADS
go back to reference Lu, F., Knox, W.H.: Generation of a broadband continuum with high spectral coherence in tapered single-mode optical fibers. Opt. Express 12(2), 347–353 (2004)PubMedADS Lu, F., Knox, W.H.: Generation of a broadband continuum with high spectral coherence in tapered single-mode optical fibers. Opt. Express 12(2), 347–353 (2004)PubMedADS
go back to reference Luke, K., Okawachi, Y., Lamont, M.R., Gaeta, A.L., Lipson, M.: Broadband mid-infrared frequency comb generation in a Si\(_3\)N\(_4\) microresonator. Opt. Lett. 40(21), 4823–4826 (2015)PubMedADS Luke, K., Okawachi, Y., Lamont, M.R., Gaeta, A.L., Lipson, M.: Broadband mid-infrared frequency comb generation in a Si\(_3\)N\(_4\) microresonator. Opt. Lett. 40(21), 4823–4826 (2015)PubMedADS
go back to reference Oh, D.Y., Sell, D., Lee, H., Yang, K.Y., Diddams, S.A., Vahala, K.J.: Supercontinuum generation in an on-chip silica waveguide. Opt. Lett. 39(4), 1046–1048 (2014)PubMedADS Oh, D.Y., Sell, D., Lee, H., Yang, K.Y., Diddams, S.A., Vahala, K.J.: Supercontinuum generation in an on-chip silica waveguide. Opt. Lett. 39(4), 1046–1048 (2014)PubMedADS
go back to reference Petersen, C.R., Prtljaga, N., Farries, M., Ward, J., Napier, B., Lloyd, G.R., Nallala, J., Stone, N., Bang, O.: Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source. Opt. Lett. 43(5), 999–1002 (2018)PubMedADS Petersen, C.R., Prtljaga, N., Farries, M., Ward, J., Napier, B., Lloyd, G.R., Nallala, J., Stone, N., Bang, O.: Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source. Opt. Lett. 43(5), 999–1002 (2018)PubMedADS
go back to reference Porcel, M.A., Schepers, F., Epping, J.P., Hellwig, T., Hoekman, M., Heideman, R.G., van der Slot, P.J.M., Lee, C.J., Schmidt, R., Bratschitsch, R., et al.: Two-octave spanning supercontinuum generation in stoichiometric silicon nitride waveguides pumped at telecom wavelengths. Opt. Express 25(2), 1542–1554 (2017)PubMedADS Porcel, M.A., Schepers, F., Epping, J.P., Hellwig, T., Hoekman, M., Heideman, R.G., van der Slot, P.J.M., Lee, C.J., Schmidt, R., Bratschitsch, R., et al.: Two-octave spanning supercontinuum generation in stoichiometric silicon nitride waveguides pumped at telecom wavelengths. Opt. Express 25(2), 1542–1554 (2017)PubMedADS
go back to reference Rahman, B.M.A., Davies, J.B.: Finite-element solution of integrated optical waveguides. J. Lightw. Technol. 2(5), 682–688 (1984)ADS Rahman, B.M.A., Davies, J.B.: Finite-element solution of integrated optical waveguides. J. Lightw. Technol. 2(5), 682–688 (1984)ADS
go back to reference Salem, R., Okawachi, Y., Yu, M., Lamont, M.R., Luke, K., Fendel, P., Lipson, M., Gaeta, A.L.: Octave-spanning supercontinuum generation in a silicon nitride waveguide pumped by a femtosecond fiber laser at 1.9 \(\upmu\)m. In: CLEO: Science and Innovations, pp. STu1I–7. Optical Society of America (2015) Salem, R., Okawachi, Y., Yu, M., Lamont, M.R., Luke, K., Fendel, P., Lipson, M., Gaeta, A.L.: Octave-spanning supercontinuum generation in a silicon nitride waveguide pumped by a femtosecond fiber laser at 1.9 \(\upmu\)m. In: CLEO: Science and Innovations, pp. STu1I–7. Optical Society of America (2015)
go back to reference Singh, N., Vermulen, D., Ruocco, A., Li, N., Ippen, E., Kärtner, F.X., Watts, M.R.: Supercontinuum generation in varying dispersion and birefringent silicon waveguide. Opt. Express 27(22), 31698–31712 (2019)PubMedADS Singh, N., Vermulen, D., Ruocco, A., Li, N., Ippen, E., Kärtner, F.X., Watts, M.R.: Supercontinuum generation in varying dispersion and birefringent silicon waveguide. Opt. Express 27(22), 31698–31712 (2019)PubMedADS
go back to reference Smirnov, S.V., Ania-Castanon, J.D., Ellingham, T.J., Kobtsev, S.M., Kukarin, S., Turitsyn, S.K.: Optical spectral broadening and supercontinuum generation in telecom applications. Opt. Fiber Technol. 12(2), 122–147 (2006)ADS Smirnov, S.V., Ania-Castanon, J.D., Ellingham, T.J., Kobtsev, S.M., Kukarin, S., Turitsyn, S.K.: Optical spectral broadening and supercontinuum generation in telecom applications. Opt. Fiber Technol. 12(2), 122–147 (2006)ADS
go back to reference Wang, T., Ng, D.K.T., Ng, S.K., Toh, Y.T., Chee, A.K.L., Chen, G.F., Wang, Q., Tan, D.T.H.: Supercontinuum generation in bandgap engineered, back-end cmos compatible silicon rich nitride waveguides. Laser Photonics Rev. 9(5), 498–506 (2015)ADS Wang, T., Ng, D.K.T., Ng, S.K., Toh, Y.T., Chee, A.K.L., Chen, G.F., Wang, Q., Tan, D.T.H.: Supercontinuum generation in bandgap engineered, back-end cmos compatible silicon rich nitride waveguides. Laser Photonics Rev. 9(5), 498–506 (2015)ADS
go back to reference Wen, J., Ma, C., Fan, W., Fu, H.: Spectral-temporal description of dispersive wave emission and soliton trapping in micro-nano silicon-on-insulator waveguides. Opt. Laser Technol. 71, 50–54 (2015)ADS Wen, J., Ma, C., Fan, W., Fu, H.: Spectral-temporal description of dispersive wave emission and soliton trapping in micro-nano silicon-on-insulator waveguides. Opt. Laser Technol. 71, 50–54 (2015)ADS
go back to reference Wen, J., Duan, L., Ma, C., Fan, W.: Numerical simulation and analysis of femtosecond pulse evolution in liquid-core photonic crystal fiber based on adaptive step-size methods. Opt. Quantum Electron. 51, 1–14 (2019) Wen, J., Duan, L., Ma, C., Fan, W.: Numerical simulation and analysis of femtosecond pulse evolution in liquid-core photonic crystal fiber based on adaptive step-size methods. Opt. Quantum Electron. 51, 1–14 (2019)
go back to reference Wen, J., Liang, B., Qin, W., Sun, W., He, C., Xiong, K.: High coherent supercontinuum generation in nitrobenzene liquid-core photonic crystal fiber with elliptical air-hole inner ring. Opt. Quantum Electron. 54(12), 817 (2022) Wen, J., Liang, B., Qin, W., Sun, W., He, C., Xiong, K.: High coherent supercontinuum generation in nitrobenzene liquid-core photonic crystal fiber with elliptical air-hole inner ring. Opt. Quantum Electron. 54(12), 817 (2022)
go back to reference Won, R.: Integrating silicon photonics. Nat. Photonics 4(8), 498–499 (2010) Won, R.: Integrating silicon photonics. Nat. Photonics 4(8), 498–499 (2010)
go back to reference Zhao, H., Kuyken, B., Clemmen, S., Leo, F., Subramanian, A., Dhakal, A., Helin, P., Severi, S., Brainis, E., Roelkens, G., et al.: Visible-to-near-infrared octave spanning supercontinuum generation in a silicon nitride waveguide. Opt. Lett. 40(10), 2177–2180 (2015)PubMedADS Zhao, H., Kuyken, B., Clemmen, S., Leo, F., Subramanian, A., Dhakal, A., Helin, P., Severi, S., Brainis, E., Roelkens, G., et al.: Visible-to-near-infrared octave spanning supercontinuum generation in a silicon nitride waveguide. Opt. Lett. 40(10), 2177–2180 (2015)PubMedADS
go back to reference Zia, H., Lüpken, N.M., Hellwig, T., Fallnich, C., Boller, K.J.: Supercontinuum generation in media with sign-alternated dispersion. Laser Photonics Rev. 14(7), 2000031 (2020)ADS Zia, H., Lüpken, N.M., Hellwig, T., Fallnich, C., Boller, K.J.: Supercontinuum generation in media with sign-alternated dispersion. Laser Photonics Rev. 14(7), 2000031 (2020)ADS
Metadata
Title
Design and analysis of inverse tapered silicon nitride waveguide for flat and highly coherent supercontinuum generation in the mid-infrared
Authors
M. R. Karim
Nayem Al Kayed
Rakayet Rafi
B. M. A. Rahman
Publication date
01-01-2024
Publisher
Springer US
Published in
Optical and Quantum Electronics / Issue 1/2024
Print ISSN: 0306-8919
Electronic ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-023-05636-5

Other articles of this Issue 1/2024

Optical and Quantum Electronics 1/2024 Go to the issue