Skip to main content
Top

2023 | OriginalPaper | Chapter

Design and Analysis of Morphed Wings

Authors : Abhishek Thakur, Arockia Selvakumar Arockia Doss, Daniel Schilberg

Published in: Recent Advances in Mechanical Engineering

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A flying machine either uses a flapping mechanism, a fixed wing or a rotating blade in order to produce lift. While considering fixed wing aircraft or a drone, in order to produce a lift or a decent, the major contributing part is the aileron. An aileron area with respect to the wing is nearly 15%. Rather a discreet movement of aileron, the wing surface can be morphed in order to produce an effect similar to aileron. This research is done to compare and analyze a morphed wing with an aileron-based wing in order to produce the lift and identify maneuvering effects for a drone. Continuous lift force distribution throughout the wing is observed over a range of different wind speeds, and the results are found to be satisfactory.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Sofla AYN, Meguid SA, Tan KT, Yeo WK (2010) Shape morphing of aircraft wing: status and challenges. Mater Des 31(3):1284–1292CrossRef Sofla AYN, Meguid SA, Tan KT, Yeo WK (2010) Shape morphing of aircraft wing: status and challenges. Mater Des 31(3):1284–1292CrossRef
6.
go back to reference Muhammed SP, Ajaj RM, Khan KA (2020) A compliant polymorphing wing for small UAVs. Chin J Aeronaut 33(10):2575–2588CrossRef Muhammed SP, Ajaj RM, Khan KA (2020) A compliant polymorphing wing for small UAVs. Chin J Aeronaut 33(10):2575–2588CrossRef
7.
go back to reference Woods BK, Bilgen O, Friswell MI (2014) Wind tunnel testing of the fish bone active camber morphing concept. J Intell Mater Syst Struct 25(7):772–785CrossRef Woods BK, Bilgen O, Friswell MI (2014) Wind tunnel testing of the fish bone active camber morphing concept. J Intell Mater Syst Struct 25(7):772–785CrossRef
8.
go back to reference Hasse A, Zuest I, Campanile LF (2011) Modal synthesis of belt-rib structures. Proc Inst Mech Eng Part C J Mech Eng Sci 225(3):722–732 Hasse A, Zuest I, Campanile LF (2011) Modal synthesis of belt-rib structures. Proc Inst Mech Eng Part C J Mech Eng Sci 225(3):722–732
9.
go back to reference Berci M, Toropov VV, Hewson RW, Gaskell PH (2014) Multidisciplinary multifidelity optimisation of a flexible wing aerofoil with reference to a small UAV. Struct Multidiscip Optim 50(4):683–699 Berci M, Toropov VV, Hewson RW, Gaskell PH (2014) Multidisciplinary multifidelity optimisation of a flexible wing aerofoil with reference to a small UAV. Struct Multidiscip Optim 50(4):683–699
10.
go back to reference Airoldi A, Crespi M, Quaranta G, Sala G (2012) Design of a morphing airfoil with composite chiral structure. J Aircr 49(4):1008–1019CrossRef Airoldi A, Crespi M, Quaranta G, Sala G (2012) Design of a morphing airfoil with composite chiral structure. J Aircr 49(4):1008–1019CrossRef
11.
go back to reference Li D, Zhao S, da Ronch A et al (2018) A review of modelling and analysis of morphing wings. Prog Aerosp Sci 100:46–62CrossRef Li D, Zhao S, da Ronch A et al (2018) A review of modelling and analysis of morphing wings. Prog Aerosp Sci 100:46–62CrossRef
12.
go back to reference Communier D, Botez RM, Wong T (2020) Design and validation of a new morphing camber system by testing in the price—Païdoussis subsonic wind tunnel. Aerospace 7(3):23CrossRef Communier D, Botez RM, Wong T (2020) Design and validation of a new morphing camber system by testing in the price—Païdoussis subsonic wind tunnel. Aerospace 7(3):23CrossRef
13.
go back to reference Meguid S, Su Y, Wang Y (2017) Complete morphing wing design using flexible-rib system. Int J Mech Mater Des 13(1):159–171CrossRef Meguid S, Su Y, Wang Y (2017) Complete morphing wing design using flexible-rib system. Int J Mech Mater Des 13(1):159–171CrossRef
14.
go back to reference Chanzy Q, Keane A (2018) Analysis and experimental validation of morphing UAV wings. Aeronaut J 122(1249):390–408CrossRef Chanzy Q, Keane A (2018) Analysis and experimental validation of morphing UAV wings. Aeronaut J 122(1249):390–408CrossRef
15.
go back to reference Kudva JN, Martin CA, Scherer LB et al (1999) Overview of the DARPA/AFRL/NASA smart wing program. In: Smart structures and materials 1999 industrial and commercial applications of smart structures technologies. International Society for Optics and Photonics, pp 230–236 Kudva JN, Martin CA, Scherer LB et al (1999) Overview of the DARPA/AFRL/NASA smart wing program. In: Smart structures and materials 1999 industrial and commercial applications of smart structures technologies. International Society for Optics and Photonics, pp 230–236
17.
go back to reference Cody L, Kelly C, Shaaban A (2012) Use of XFOIL in design of camber-controlled morphing UAVs. Comput Appl Eng Educ 20:673–680CrossRef Cody L, Kelly C, Shaaban A (2012) Use of XFOIL in design of camber-controlled morphing UAVs. Comput Appl Eng Educ 20:673–680CrossRef
18.
go back to reference Critzos CC, Heyson HH, Boswinkle Jr RW (1955) Aerodynamic characteristics of NACA 0012 airfoil section at angles of attack from 0 degrees to 180 degrees (No. NACA-TN-3361) Critzos CC, Heyson HH, Boswinkle Jr RW (1955) Aerodynamic characteristics of NACA 0012 airfoil section at angles of attack from 0 degrees to 180 degrees (No. NACA-TN-3361)
20.
go back to reference Rao D (2020) Design and analysis of fixed-wing UAV. The print has aerodynamic, structural and stability analysis of a Fixed-Wing UAV Rao D (2020) Design and analysis of fixed-wing UAV. The print has aerodynamic, structural and stability analysis of a Fixed-Wing UAV
22.
go back to reference Wu SF, Grimble MJ, Breslin SG (1997) Quantitative feedback theory for lateral robust flight control systems design. 4. TITLE AND SUBTITLE, 235 Wu SF, Grimble MJ, Breslin SG (1997) Quantitative feedback theory for lateral robust flight control systems design. 4. TITLE AND SUBTITLE, 235
Metadata
Title
Design and Analysis of Morphed Wings
Authors
Abhishek Thakur
Arockia Selvakumar Arockia Doss
Daniel Schilberg
Copyright Year
2023
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-2349-6_27