Skip to main content
Top
Published in: Wireless Personal Communications 4/2019

23-02-2018

Design and Implementation of Optical Signal Reinstatement Technique for High DPSK RZ Transceiver Scheme

Authors: B. Das, M. F. L. Abdullah, B. Pandey, D. M. A. Hussain

Published in: Wireless Personal Communications | Issue 4/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Optical signal reinstatement (OSR) is a common technique used in high-speed communication systems. OSR can be achieved using various techniques such as; semiconductor optical amplifiers, optical parametric amplifiers, optical loop mirror, and etc. The existing OSR techniques of a maximum speed of 40 Gb/s for long haul communication of 300 km transmission distance offer the 10−10 BER of and noise (phase and amplitude) mitigation. Presently, the existing OSR techniques require low BER, strong noise rejection for more than 40 Gb/s degraded signal. In this work, optical signal restoration technique is developed for 100 Gb/s degraded signal for 400 km transmission distance. The proposed technique is designed using 2R and PSA. The benefit for using 2R with PSA is that 2R (re-amplify regenerate) the signal, while PSA is used to mitigate the amplitude and phase noises respectively. The developed technique is implemented for DPSK-RZ transceiver system and offers the BER of 10−21 and noise mitigation of more than 90% for DPSK-RZ transceiver system.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hecht, J. (2015). Understanding fiber optics. Seattle: CreateSpace Independent Publishing Platform.CrossRef Hecht, J. (2015). Understanding fiber optics. Seattle: CreateSpace Independent Publishing Platform.CrossRef
2.
go back to reference Djordjevic, I. B., Minkov, L. L., & Batshon, H. G. (2008). Mitigation of linear and nonlinear impairments in high-speed optical networks by using LDPC-coded turbo equalization. IEEE Journal on Selected Areas in Communications, 26(6), 73–83.CrossRef Djordjevic, I. B., Minkov, L. L., & Batshon, H. G. (2008). Mitigation of linear and nonlinear impairments in high-speed optical networks by using LDPC-coded turbo equalization. IEEE Journal on Selected Areas in Communications, 26(6), 73–83.CrossRef
3.
go back to reference Lucek, J. K., & Smith, K. (1993). All-optical signal regenerator. Optics Letters, 18(15), 1226–1228.CrossRef Lucek, J. K., & Smith, K. (1993). All-optical signal regenerator. Optics Letters, 18(15), 1226–1228.CrossRef
4.
go back to reference Louis, P. F. (1972). U.S. Patent No. 3,671,875. Washington, DC: U.S. Patent and Trademark Office. Louis, P. F. (1972). U.S. Patent No. 3,671,875. Washington, DC: U.S. Patent and Trademark Office.
5.
go back to reference Connelly, M. J. (2007). Semiconductor optical amplifiers. New York: Springer. Connelly, M. J. (2007). Semiconductor optical amplifiers. New York: Springer.
6.
go back to reference Andrekson, P. A., Petropoulos, P., Radic, S., Peucheret, C., & Jazayerifar, M. (2015). Fiber optical parametric amplifiers in optical communication systems. Laser and Photonics Reviews, 9(1), 50–74.CrossRef Andrekson, P. A., Petropoulos, P., Radic, S., Peucheret, C., & Jazayerifar, M. (2015). Fiber optical parametric amplifiers in optical communication systems. Laser and Photonics Reviews, 9(1), 50–74.CrossRef
7.
go back to reference Das, B., Abdullah, M. F. L., Shah, N. S. M., Ahmed, L. M. A., & Pandey, B. (2017). Development of new all-optical signal regeneration technique. Wireless Personal Communications, 95(2), 523–537.CrossRef Das, B., Abdullah, M. F. L., Shah, N. S. M., Ahmed, L. M. A., & Pandey, B. (2017). Development of new all-optical signal regeneration technique. Wireless Personal Communications, 95(2), 523–537.CrossRef
8.
go back to reference Das, B., Abdullah, M. F. L., Chowdhry, B. S., & Shah, N. S. M. (2017). A novel signal regeneration technique for high speed DPSK communication systems. Wireless Personal Communications, 96(2), 3249–3273.CrossRef Das, B., Abdullah, M. F. L., Chowdhry, B. S., & Shah, N. S. M. (2017). A novel signal regeneration technique for high speed DPSK communication systems. Wireless Personal Communications, 96(2), 3249–3273.CrossRef
9.
go back to reference Willner, A. E., Khaleghi, S., Chitgarha, M. R., & Yilmaz, O. F. (2014). All-optical signal processing. Journal of Lightwave Technology, 32(4), 660–680.CrossRef Willner, A. E., Khaleghi, S., Chitgarha, M. R., & Yilmaz, O. F. (2014). All-optical signal processing. Journal of Lightwave Technology, 32(4), 660–680.CrossRef
10.
go back to reference Weik, M. (2012). Fiber optics standard dictionary. New York: Springer. Weik, M. (2012). Fiber optics standard dictionary. New York: Springer.
11.
go back to reference Rohde, M., Caspar, C., Heimes, N., Konitzer, M., Bachus, E. J., & Hanik, N. (2000). Robustness of DPSK direct detection transmission format in standard fibre WDM systems. Electronics Letters, 36(17), 1483–1484.CrossRef Rohde, M., Caspar, C., Heimes, N., Konitzer, M., Bachus, E. J., & Hanik, N. (2000). Robustness of DPSK direct detection transmission format in standard fibre WDM systems. Electronics Letters, 36(17), 1483–1484.CrossRef
12.
go back to reference Das, B., Abdullah, M. F. L., & Shah, N. S. M. (2017). Development of all optical signal regeneration method for 100 Gb/s differential phase shift keying degraded signal. In 9th international conference on robotic, vision, signal processing and power applications (pp. 527–534). Singapore: Springer. Das, B., Abdullah, M. F. L., & Shah, N. S. M. (2017). Development of all optical signal regeneration method for 100 Gb/s differential phase shift keying degraded signal. In 9th international conference on robotic, vision, signal processing and power applications (pp. 527–534). Singapore: Springer.
13.
go back to reference Marcuse, D. (1983). Classical derivation of the laser rate equation. IEEE Journal of Quantum Electronics, 19(8), 1228–1231.CrossRef Marcuse, D. (1983). Classical derivation of the laser rate equation. IEEE Journal of Quantum Electronics, 19(8), 1228–1231.CrossRef
14.
go back to reference Andre, P. S., Pinto, A. N., Pinto, J. L., & da Rocha, F. (1999). Extraction of DFB laser rate equations parameters for optical simulation purposes. Conftele, 99, 561–564. Andre, P. S., Pinto, A. N., Pinto, J. L., & da Rocha, F. (1999). Extraction of DFB laser rate equations parameters for optical simulation purposes. Conftele, 99, 561–564.
15.
go back to reference Senior, J. M., & Jamro, M. Y. (2009). Optical fiber communications: Principles and practice. Madison: Pearson Education. Senior, J. M., & Jamro, M. Y. (2009). Optical fiber communications: Principles and practice. Madison: Pearson Education.
16.
go back to reference Van Liet, D. (Ed.). (2012). Nonlinear optical systems: Principles, phenomena, and advanced signal processing. Boca Raton: CRC Press. Van Liet, D. (Ed.). (2012). Nonlinear optical systems: Principles, phenomena, and advanced signal processing. Boca Raton: CRC Press.
17.
go back to reference Le, N. B. (2015). Advanced digital optical communications. Philadelphia: Taylor and Francis. Le, N. B. (2015). Advanced digital optical communications. Philadelphia: Taylor and Francis.
18.
go back to reference Lutovac, M. D., Tošić, D. V., & Evans, B. L. (2001). Filter design for signal processing using MATLAB and mathematica. Upper Saddle River: Prentice Hall. Lutovac, M. D., Tošić, D. V., & Evans, B. L. (2001). Filter design for signal processing using MATLAB and mathematica. Upper Saddle River: Prentice Hall.
19.
go back to reference Le, N. B. (2013). Digital processing: Optical transmission and coherent receiving techniques. Boca Raton: CRC Press. Le, N. B. (2013). Digital processing: Optical transmission and coherent receiving techniques. Boca Raton: CRC Press.
Metadata
Title
Design and Implementation of Optical Signal Reinstatement Technique for High DPSK RZ Transceiver Scheme
Authors
B. Das
M. F. L. Abdullah
B. Pandey
D. M. A. Hussain
Publication date
23-02-2018
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 4/2019
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-018-5605-9

Other articles of this Issue 4/2019

Wireless Personal Communications 4/2019 Go to the issue