Skip to main content
Top
Published in: Topics in Catalysis 14/2018

24-08-2018 | Original Paper

Design and Investigation of Molybdenum Modified Platinum Surfaces for Modeling of CO Tolerant Electrocatalysts

Authors: I. Bakos, I. Borbáth, Á. Vass, Z. Pászti, A. Tompos

Published in: Topics in Catalysis | Issue 14/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Mo overlayers were prepared on smooth polycrystalline platinum and platinized platinum electrode surfaces by in situ electrochemical deposition of molybdenum oxide at potential below 500 mV for modeling Mo–Pt electrocatalysts. Correlations were found between the applied potential and the amount of deposited Mo, which never exceeded a monolayer, thus Pt–Mo bonds stabilize the deposited Mo oxide. Electrochemical measurements suggested that Mo deposited from a Mo(VI) solution was reduced to the 4+ oxidation state. In line with the ex situ XPS findings a certain part (20–25%) of the initial Mo layer remained irreversibly adsorbed on the Pt/Pt electrode even after oxidation into the 6+ state at high potentials; this fractional monolayer cannot be dissolved even by prolonged cyclic polarization up to 1000 mV. It has been demonstrated that the irreversibly bound Mo partial monolayer is enough to change significantly the CO poisoning properties of the Pt surface. On this Mo:Pt (1:4) surface CO oxidation is initiated at extremely low potentials (ca. 100 mV). Moreover, only Pt modified by Mo(IV) species is active in low-potential CO oxidation reaction as after oxidizing the irreversibly adsorbed Mo to the 6+ state, CO oxidation is no longer observable. Nevertheless, the catalyst can be reactivated by reduction of molybdenum into the 4+ oxidation state. However, this reduction requires clean, CO-free Pt surface. If Pt is largely covered by CO, reduction of Mo(VI) into Mo(IV) does not occur and thus the low potential CO oxidation remains hindered.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Meier JC, Galeano C, Katsounaros I, Topalov AA, Kostka A, Schuüth F, Mayrhofer KJJ (2012) Degradation mechanisms of Pt/C fuel cell catalysts under simulated start-stop conditions. ACS Catal 2(5):832–843CrossRef Meier JC, Galeano C, Katsounaros I, Topalov AA, Kostka A, Schuüth F, Mayrhofer KJJ (2012) Degradation mechanisms of Pt/C fuel cell catalysts under simulated start-stop conditions. ACS Catal 2(5):832–843CrossRef
2.
go back to reference Mathias MF, Makharia R, Gasteiger HA, Conley JJ, Fuller TJ, Gittleman CI, Kocha SS, Miller DP, Mittelsteadt CK, Xie T, Yan SG, Yu PT (2005) Two fuel cell cars in every garage? Electrochem Soc Interface 14:24–35 Mathias MF, Makharia R, Gasteiger HA, Conley JJ, Fuller TJ, Gittleman CI, Kocha SS, Miller DP, Mittelsteadt CK, Xie T, Yan SG, Yu PT (2005) Two fuel cell cars in every garage? Electrochem Soc Interface 14:24–35
3.
go back to reference Elezović NR, Gajić-Krstajić LjM, Vračar LjM, Krstajić NV (2010) Effect of chemisorbed CO on MoOx-Pt/C electrode on the kinetics of hydrogen oxidation reaction. Int J Hydrog Energy 35:12878–12887CrossRef Elezović NR, Gajić-Krstajić LjM, Vračar LjM, Krstajić NV (2010) Effect of chemisorbed CO on MoOx-Pt/C electrode on the kinetics of hydrogen oxidation reaction. Int J Hydrog Energy 35:12878–12887CrossRef
4.
go back to reference Santiago EI, Batista MS, Assaf EM, Ticianelli EA (2004) Mechanism of CO tolerance on molybdenum-based electrocatalysts for PEMFC. J Electrochem Soc 151(7):A944–A949CrossRef Santiago EI, Batista MS, Assaf EM, Ticianelli EA (2004) Mechanism of CO tolerance on molybdenum-based electrocatalysts for PEMFC. J Electrochem Soc 151(7):A944–A949CrossRef
5.
go back to reference Muhamad EN, Takeguchi T, Wang F, Wang G, Yamanaka T, Ueda W (2009) A comparative study of variously prepared carbon-supported Pt/MoOx anode catalysts for a polymer electrolyte fuel cell. J Electrochem Soc 156:B1361–B1368CrossRef Muhamad EN, Takeguchi T, Wang F, Wang G, Yamanaka T, Ueda W (2009) A comparative study of variously prepared carbon-supported Pt/MoOx anode catalysts for a polymer electrolyte fuel cell. J Electrochem Soc 156:B1361–B1368CrossRef
6.
go back to reference Yan Z, Xie J, Jing J, Zhang M, Wei W, Yin S (2012) MoO2 nanocrystals down to 5 nm as Pt electrocatalyst promoter for stable oxygen reduction reaction. Int J Hydrog Energy 37:15948–15955CrossRef Yan Z, Xie J, Jing J, Zhang M, Wei W, Yin S (2012) MoO2 nanocrystals down to 5 nm as Pt electrocatalyst promoter for stable oxygen reduction reaction. Int J Hydrog Energy 37:15948–15955CrossRef
7.
go back to reference Martins PFBD, Ticianelli EA (2015) Electrocatalytic activity and stability of platinum nanoparticles supported on carbon-molybdenum oxides for the oxygen reduction reaction. ChemElectroChem 2(9):1298–1306CrossRef Martins PFBD, Ticianelli EA (2015) Electrocatalytic activity and stability of platinum nanoparticles supported on carbon-molybdenum oxides for the oxygen reduction reaction. ChemElectroChem 2(9):1298–1306CrossRef
8.
go back to reference Micoud F, Maillard F, Bonnefont A, Job N, Chatenet M (2010) The role of the support in COads monolayer electrooxidation on Pt nanoparticles: Pt/WOx vs. Pt/C. Phys Chem Chem Phys 12:1182–1193CrossRefPubMed Micoud F, Maillard F, Bonnefont A, Job N, Chatenet M (2010) The role of the support in COads monolayer electrooxidation on Pt nanoparticles: Pt/WOx vs. Pt/C. Phys Chem Chem Phys 12:1182–1193CrossRefPubMed
9.
go back to reference Pereira LGS, Paganin VA, Ticianelli EA (2009) Investigation of the CO tolerance mechanism at several Pt-based bimetallic anode electrocatalysts in a PEM fuel cell. Electrochim Acta 54:1992–1998CrossRef Pereira LGS, Paganin VA, Ticianelli EA (2009) Investigation of the CO tolerance mechanism at several Pt-based bimetallic anode electrocatalysts in a PEM fuel cell. Electrochim Acta 54:1992–1998CrossRef
10.
go back to reference Borbath I, Guban D, Bakos I, Paszti Z, Gajdos G, Sajo IE, Vass Á, Tompos A (2018) Exclusive formation of alloy phases via anchoring technique—from bimetallic catalysts to electrocatalysis. Catal Today 306:58–70CrossRef Borbath I, Guban D, Bakos I, Paszti Z, Gajdos G, Sajo IE, Vass Á, Tompos A (2018) Exclusive formation of alloy phases via anchoring technique—from bimetallic catalysts to electrocatalysis. Catal Today 306:58–70CrossRef
11.
go back to reference Gubán D, Tompos A, Bakos I, Pászti Z, Gajdos G, Sajó IE, Borbáth I (2017) CO oxidation and oxygen reduction activity of bimetallic Sn-Pt electrocatalysts on carbon: effect of the microstructure and the exclusive formation of the Pt3Sn alloy. React Kinet Mech Catal 121:43–67CrossRef Gubán D, Tompos A, Bakos I, Pászti Z, Gajdos G, Sajó IE, Borbáth I (2017) CO oxidation and oxygen reduction activity of bimetallic Sn-Pt electrocatalysts on carbon: effect of the microstructure and the exclusive formation of the Pt3Sn alloy. React Kinet Mech Catal 121:43–67CrossRef
12.
go back to reference Mukerjee S, Lee SJ, Ticianelli EA, McBreen J, Grgur BN, Markovic NM, Ross PN, Giallombardo JR, De Castro ES (1999) Investigation of enhanced CO tolerance in proton exchange membrane fuel cells by carbon supported PtMo alloy catalyst. Electrochem Solid State Lett 2(1):12–15CrossRef Mukerjee S, Lee SJ, Ticianelli EA, McBreen J, Grgur BN, Markovic NM, Ross PN, Giallombardo JR, De Castro ES (1999) Investigation of enhanced CO tolerance in proton exchange membrane fuel cells by carbon supported PtMo alloy catalyst. Electrochem Solid State Lett 2(1):12–15CrossRef
13.
go back to reference Grgur BN, Markovic NM, Ross PN (1999) The electro-oxidation of H2 and H2/CO mixtures on carbon-supported PtxMoy alloy catalysts. J Electrochem Soc 146:1613–1619CrossRef Grgur BN, Markovic NM, Ross PN (1999) The electro-oxidation of H2 and H2/CO mixtures on carbon-supported PtxMoy alloy catalysts. J Electrochem Soc 146:1613–1619CrossRef
14.
go back to reference Papakonstantinou G, Paloukis F, Siokou A, Neophytides SG (2007) The electrokinetics of CO oxidation on Pt4Mo(20 wt %)/C interfaced with Nafion membrane. J Electrochem Soc 154(10):B989–B997CrossRef Papakonstantinou G, Paloukis F, Siokou A, Neophytides SG (2007) The electrokinetics of CO oxidation on Pt4Mo(20 wt %)/C interfaced with Nafion membrane. J Electrochem Soc 154(10):B989–B997CrossRef
15.
go back to reference Mukerjee S, Urian RC, Lee SJ, Ticianelli EA, McBreen J (2004) Electrocatalysis of CO tolerance by carbon-supported PtMo electrocatalysts in PEMFCs. J Electrochem Soc 151:A1094–A1103CrossRef Mukerjee S, Urian RC, Lee SJ, Ticianelli EA, McBreen J (2004) Electrocatalysis of CO tolerance by carbon-supported PtMo electrocatalysts in PEMFCs. J Electrochem Soc 151:A1094–A1103CrossRef
16.
go back to reference Papageorgopoulos DC, Keijzer M, de Bruijn FA (2002) The inclusion of Mo, Nb and Ta in Pt and PtRu carbon supported 3 electrocatalysts in the quest for improved CO tolerant PEMFC anodes. Electrochim Acta 48:197–204CrossRef Papageorgopoulos DC, Keijzer M, de Bruijn FA (2002) The inclusion of Mo, Nb and Ta in Pt and PtRu carbon supported 3 electrocatalysts in the quest for improved CO tolerant PEMFC anodes. Electrochim Acta 48:197–204CrossRef
17.
go back to reference Lee SA, Park KW, Choi JH, Kwon BK, Sung YE (2002) Nanoparticle synthesis and electrocatalytic activity of Pt alloys for direct methanol fuel cells. J Electrochem Soc 149(10):A1299–A1304CrossRef Lee SA, Park KW, Choi JH, Kwon BK, Sung YE (2002) Nanoparticle synthesis and electrocatalytic activity of Pt alloys for direct methanol fuel cells. J Electrochem Soc 149(10):A1299–A1304CrossRef
18.
go back to reference Gateiger HA, Markovic NM, Ross PN Jr (1995) H2 and CO electrooxidation on well-characterized Pt, Ru, and Pt-Ru. 1. Rotating disk electrode studies of the pure gases including temperature effects. J Phys Chem 99:8290–8301CrossRef Gateiger HA, Markovic NM, Ross PN Jr (1995) H2 and CO electrooxidation on well-characterized Pt, Ru, and Pt-Ru. 1. Rotating disk electrode studies of the pure gases including temperature effects. J Phys Chem 99:8290–8301CrossRef
19.
go back to reference Ross PN Jr, Kinoshita K, Scarpellino AJ, Stonehart P (1975) Electrocatalysis on binary alloys. II. Oxidation of molecular hydrogen on supported Pt + Ru alloys. J Electroanal Chem 63:97–110CrossRef Ross PN Jr, Kinoshita K, Scarpellino AJ, Stonehart P (1975) Electrocatalysis on binary alloys. II. Oxidation of molecular hydrogen on supported Pt + Ru alloys. J Electroanal Chem 63:97–110CrossRef
20.
go back to reference Grgur BN, Zhuang G, Markovic NM, Ross PN (1997) Electrooxidation of H2/CO mixtures on a well-characterized Pt75Mo25 alloy surface. J Phys Chem B 101:3910–3913CrossRef Grgur BN, Zhuang G, Markovic NM, Ross PN (1997) Electrooxidation of H2/CO mixtures on a well-characterized Pt75Mo25 alloy surface. J Phys Chem B 101:3910–3913CrossRef
21.
go back to reference Grgur BN, Markovic NM, Ross PN (1998) Electrooxidation of H2, CO, and H2/CO mixtures on a well-characterized Pt70Mo30 bulk alloy electrode. J Phys Chem B 102:2494–2501CrossRef Grgur BN, Markovic NM, Ross PN (1998) Electrooxidation of H2, CO, and H2/CO mixtures on a well-characterized Pt70Mo30 bulk alloy electrode. J Phys Chem B 102:2494–2501CrossRef
22.
go back to reference Dos Anjos DM, Kokoh KB, Léger JM, De Andrade AR, Olivi P, Tremiliosi-Filho G (2006) Electrocatalytic oxidation of ethanol on Pt-Mo bimetallic electrodes in acid medium. J Appl Electrochem 36:1391–1397CrossRef Dos Anjos DM, Kokoh KB, Léger JM, De Andrade AR, Olivi P, Tremiliosi-Filho G (2006) Electrocatalytic oxidation of ethanol on Pt-Mo bimetallic electrodes in acid medium. J Appl Electrochem 36:1391–1397CrossRef
23.
go back to reference Igarashi H, Fujino T, Zhu Y, Uchida H, Watanabe M (2001) CO tolerance of Pt alloy electrocatalysts for polymer electrolyte fuel cells and the detoxification mechanism. Phys Chem Chem Phys 3:306–314CrossRef Igarashi H, Fujino T, Zhu Y, Uchida H, Watanabe M (2001) CO tolerance of Pt alloy electrocatalysts for polymer electrolyte fuel cells and the detoxification mechanism. Phys Chem Chem Phys 3:306–314CrossRef
24.
go back to reference Takabatake Y, Noda Z, Lyth SM, Hayashi A, Sasaki K (2014) Cycle durability of metal oxide supports for PEFC electrocatalysts. Int J Hydrog Energy 39:5074–5082CrossRef Takabatake Y, Noda Z, Lyth SM, Hayashi A, Sasaki K (2014) Cycle durability of metal oxide supports for PEFC electrocatalysts. Int J Hydrog Energy 39:5074–5082CrossRef
25.
go back to reference Micoud F, Maillard F, Gourgaud A, Chatenet M (2009) Unique CO-tolerance of Pt-WOx materials. Electrochem Commun 11:651–654CrossRef Micoud F, Maillard F, Gourgaud A, Chatenet M (2009) Unique CO-tolerance of Pt-WOx materials. Electrochem Commun 11:651–654CrossRef
26.
go back to reference Ioroi T, Akita T, Yamazaki S, Siroma Z, Fujiwara N, Yasuda K (2006) Comparative study of carbon-supported Pt/Mo-oxide and PtRu for use as CO-tolerant anode catalysts. Electrochim Acta 52:491–498CrossRef Ioroi T, Akita T, Yamazaki S, Siroma Z, Fujiwara N, Yasuda K (2006) Comparative study of carbon-supported Pt/Mo-oxide and PtRu for use as CO-tolerant anode catalysts. Electrochim Acta 52:491–498CrossRef
27.
go back to reference Ma L, Zhao X, Si F, Liu C, Liao J, Liang L, Xing W (2010) A comparative study of Pt/C and Pt-MoOx/C catalysts with various compositions for methanol electro-oxidation. Electrochim Acta 55:9105–9112CrossRef Ma L, Zhao X, Si F, Liu C, Liao J, Liang L, Xing W (2010) A comparative study of Pt/C and Pt-MoOx/C catalysts with various compositions for methanol electro-oxidation. Electrochim Acta 55:9105–9112CrossRef
28.
go back to reference Elezović NR, Babić BM, Radmilović VR, Gojković SLj, Krstajić NV, Vračar LjM (2008) Pt/C doped by MoOx as the electrocatalyst for oxygen reduction and methanol oxidation. J Power Sources 175:250–255CrossRef Elezović NR, Babić BM, Radmilović VR, Gojković SLj, Krstajić NV, Vračar LjM (2008) Pt/C doped by MoOx as the electrocatalyst for oxygen reduction and methanol oxidation. J Power Sources 175:250–255CrossRef
29.
go back to reference Pozio A, Giorgi L, Antolini E, Passalacqua E (2000) Electroxidation of H2 on Pt/C, Pt-Ru/C and Pt-Mo/C anodes for polymer electrolyte fuel cell. Electrochim Acta 46:555–561CrossRef Pozio A, Giorgi L, Antolini E, Passalacqua E (2000) Electroxidation of H2 on Pt/C, Pt-Ru/C and Pt-Mo/C anodes for polymer electrolyte fuel cell. Electrochim Acta 46:555–561CrossRef
30.
go back to reference Maillard F, Peyrelade E, Soldo-Olivier Y, Chatenet M, Chaînet E, Faure R (2007) Is carbon-supported Pt-WOx composite a CO-tolerant material? Electrochim Acta 52:1958–1967CrossRef Maillard F, Peyrelade E, Soldo-Olivier Y, Chatenet M, Chaînet E, Faure R (2007) Is carbon-supported Pt-WOx composite a CO-tolerant material? Electrochim Acta 52:1958–1967CrossRef
31.
go back to reference Li R, Hao H, Huang T, Yu A (2012) Electrodeposited Pd-MoOx catalysts with enhanced catalytic activity for formic acid electrooxidation. Electrochim Acta 76:292–299CrossRef Li R, Hao H, Huang T, Yu A (2012) Electrodeposited Pd-MoOx catalysts with enhanced catalytic activity for formic acid electrooxidation. Electrochim Acta 76:292–299CrossRef
32.
go back to reference Vellacheri R, Unni SM, Nahire S, Kharul UK, Kurungot S (2010) Pt-MoOx-carbon nanotube redox couple based electrocatalyst as a potential partner with polybenzimidazole membrane for high temperature polymer electrolyte membrane fuel cell applications. Electrochim Acta 55:2878–2887CrossRef Vellacheri R, Unni SM, Nahire S, Kharul UK, Kurungot S (2010) Pt-MoOx-carbon nanotube redox couple based electrocatalyst as a potential partner with polybenzimidazole membrane for high temperature polymer electrolyte membrane fuel cell applications. Electrochim Acta 55:2878–2887CrossRef
33.
go back to reference Ordóñez LC, Roquero P, Sebastian PJ, Ramírez J (2007) CO oxidation on carbon-supported PtMo electrocatalysts: effect of the platinum particle size. Int J Hydrog Energy 32:3147–3153CrossRef Ordóñez LC, Roquero P, Sebastian PJ, Ramírez J (2007) CO oxidation on carbon-supported PtMo electrocatalysts: effect of the platinum particle size. Int J Hydrog Energy 32:3147–3153CrossRef
34.
go back to reference Ioroi T, Yasuda K, Siroma Z, Fujiwara N, Miyazaki Y (2003) Enhanced CO-tolerance of carbon-supported platinum and molybdenum oxide anode catalyst. J Electrochem Soc 150:A1225–A1230CrossRef Ioroi T, Yasuda K, Siroma Z, Fujiwara N, Miyazaki Y (2003) Enhanced CO-tolerance of carbon-supported platinum and molybdenum oxide anode catalyst. J Electrochem Soc 150:A1225–A1230CrossRef
35.
go back to reference Martínez-Huerta MV, Rodríguez JL, Tsiouvaras N, Pena MA, Fierro JLG, Pastor E (2008) Novel synthesis method of CO-tolerant PtRu-MoOx nanoparticles: structural characteristics and performance for methanol electrooxidation. Chem Mater 20:4249–4259CrossRef Martínez-Huerta MV, Rodríguez JL, Tsiouvaras N, Pena MA, Fierro JLG, Pastor E (2008) Novel synthesis method of CO-tolerant PtRu-MoOx nanoparticles: structural characteristics and performance for methanol electrooxidation. Chem Mater 20:4249–4259CrossRef
36.
go back to reference Zhang H, Wang Y, Fachini ER, Cabrera CR (1999) Electrochemically codeposited platinum/molybdenum oxide electrode for catalytic oxidation of methanol in acid solution. Electrochem Solid State Lett 2(9):437–439CrossRef Zhang H, Wang Y, Fachini ER, Cabrera CR (1999) Electrochemically codeposited platinum/molybdenum oxide electrode for catalytic oxidation of methanol in acid solution. Electrochem Solid State Lett 2(9):437–439CrossRef
37.
go back to reference Òªakar İ, Özdokur KV, Demir B, Yavuz E, Demirkol DO, Koçak S, Timur S, Ertaș FN (2013) Molybdenum oxide/platinum modified glassy carbon electrode: a novel electrocatalytic platform for the monitoring of electrochemical reduction of oxygen and its biosensing applications. Sens Actuators B 185:331–336CrossRef Òªakar İ, Özdokur KV, Demir B, Yavuz E, Demirkol DO, Koçak S, Timur S, Ertaș FN (2013) Molybdenum oxide/platinum modified glassy carbon electrode: a novel electrocatalytic platform for the monitoring of electrochemical reduction of oxygen and its biosensing applications. Sens Actuators B 185:331–336CrossRef
38.
go back to reference Yavuz E, Özdokur KV, Cakar I, Kocak S, Ertas FN (2015) Electrochemical preparation, characterization of molybdenum-oxide/platinum binary catalysts and its application to oxygen reduction reaction in weakly acidic medium. Electrochim Acta 151:72–80CrossRef Yavuz E, Özdokur KV, Cakar I, Kocak S, Ertas FN (2015) Electrochemical preparation, characterization of molybdenum-oxide/platinum binary catalysts and its application to oxygen reduction reaction in weakly acidic medium. Electrochim Acta 151:72–80CrossRef
39.
go back to reference Samjeske G, Wang H, Löffler T, Baltruschat H (2002) CO and methanol oxidation at Pt-electrodes modified by Mo. Electrochim Acta 47:3681–3692CrossRef Samjeske G, Wang H, Löffler T, Baltruschat H (2002) CO and methanol oxidation at Pt-electrodes modified by Mo. Electrochim Acta 47:3681–3692CrossRef
40.
go back to reference Massong H, Wang H, Samjeské G, Baltruschat H (2000) The co-catalytic effect of Sn, Ru and Mo decorating steps of Pt(111) vicinal electrode surfaces on the oxidation of CO. Electrochim Acta 46:701–707CrossRef Massong H, Wang H, Samjeské G, Baltruschat H (2000) The co-catalytic effect of Sn, Ru and Mo decorating steps of Pt(111) vicinal electrode surfaces on the oxidation of CO. Electrochim Acta 46:701–707CrossRef
41.
go back to reference Cafarova SF, Aliyev AS, Elrouby M, Soltanova N, Tagiyev DB (2015) Studying the electrochemical deposition process of molybdenum from aqueous solution of molybdate ions. J Electrochem Sci Eng 5(4):231–235CrossRef Cafarova SF, Aliyev AS, Elrouby M, Soltanova N, Tagiyev DB (2015) Studying the electrochemical deposition process of molybdenum from aqueous solution of molybdate ions. J Electrochem Sci Eng 5(4):231–235CrossRef
42.
go back to reference Lu J, Li WS, Du JH, Fu JM (2005) Co-deposition of Pt-HxMoO3 and its catalysis on methanol oxidation in sulfuric acid solution. J New Mater Electrochem Syst 8:5–14 Lu J, Li WS, Du JH, Fu JM (2005) Co-deposition of Pt-HxMoO3 and its catalysis on methanol oxidation in sulfuric acid solution. J New Mater Electrochem Syst 8:5–14
43.
go back to reference Shropshire JA (1965) The catalysis of the electrochemical oxidation of formaldehyde and methanol by molybdates. J Electrochem Soc 112:467–469CrossRef Shropshire JA (1965) The catalysis of the electrochemical oxidation of formaldehyde and methanol by molybdates. J Electrochem Soc 112:467–469CrossRef
44.
go back to reference Nakajima H, Kita H (1990) The role of surface molybdenum species in methanol oxidation on the platinum electrode. Electrochim Acta 35:849–853CrossRef Nakajima H, Kita H (1990) The role of surface molybdenum species in methanol oxidation on the platinum electrode. Electrochim Acta 35:849–853CrossRef
45.
go back to reference Horkans J, Shafer MW (1977) Effect of orientation, composition, and electronic factors in the reduction of O2 on single crystal electrodes of the conducting oxides of molybdenum and tungsten. J Electrochem Soc 124:1196–1202CrossRef Horkans J, Shafer MW (1977) Effect of orientation, composition, and electronic factors in the reduction of O2 on single crystal electrodes of the conducting oxides of molybdenum and tungsten. J Electrochem Soc 124:1196–1202CrossRef
46.
go back to reference Zhang Z, Liu J, Gu J, Su L, Cheng L (2014) An overview of metal oxide materials as electrocatalysts and supports for polymer electrolyte fuel cells. Energy Environ Sci 7:2535–2558CrossRef Zhang Z, Liu J, Gu J, Su L, Cheng L (2014) An overview of metal oxide materials as electrocatalysts and supports for polymer electrolyte fuel cells. Energy Environ Sci 7:2535–2558CrossRef
47.
go back to reference De Rosa L, Tomachuk CR, Springer J, Mitton DB, Saiello S, Bellucci F (2004) The wet corrosion of molybdenum thin film. Part I: behavior at 25 °C. Mater Corros 55:602–609CrossRef De Rosa L, Tomachuk CR, Springer J, Mitton DB, Saiello S, Bellucci F (2004) The wet corrosion of molybdenum thin film. Part I: behavior at 25 °C. Mater Corros 55:602–609CrossRef
49.
go back to reference Wang Y, Fachini ER, Cruz G, Zhu Y, Ishikawa Y, Colucci JA, Cabrera CR (2001) Effect of surface composition of electrochemically codeposited platinum/molybdenum oxide on methanol oxidation. J Electrochem Soc 148:C222–C226CrossRef Wang Y, Fachini ER, Cruz G, Zhu Y, Ishikawa Y, Colucci JA, Cabrera CR (2001) Effect of surface composition of electrochemically codeposited platinum/molybdenum oxide on methanol oxidation. J Electrochem Soc 148:C222–C226CrossRef
50.
go back to reference Saji VS, Lee CW (2012) Molybdenum, molybdenum oxides, and their electrochemistry. ChemSusChem 5(7):1146–1161CrossRefPubMed Saji VS, Lee CW (2012) Molybdenum, molybdenum oxides, and their electrochemistry. ChemSusChem 5(7):1146–1161CrossRefPubMed
51.
go back to reference Mayrhofer KJJ, Hartl K, Juhart V, Arenz M (2009) Degradation of carbon-supported Pt bimetallic nanoparticles by surface segregation. J Am Chem Soc 131:16348–16349CrossRefPubMed Mayrhofer KJJ, Hartl K, Juhart V, Arenz M (2009) Degradation of carbon-supported Pt bimetallic nanoparticles by surface segregation. J Am Chem Soc 131:16348–16349CrossRefPubMed
52.
go back to reference Gubán D, Borbáth I, Pászti Z, Sajó IE, Drotár E, Hegedűs M, Tompos A (2015) Preparation and characterization of novel Ti0.7W0.3O2-C composite materials for Pt-based anode electrocatalysts with enhanced CO tolerance. Appl Catal B 174:455–470CrossRef Gubán D, Borbáth I, Pászti Z, Sajó IE, Drotár E, Hegedűs M, Tompos A (2015) Preparation and characterization of novel Ti0.7W0.3O2-C composite materials for Pt-based anode electrocatalysts with enhanced CO tolerance. Appl Catal B 174:455–470CrossRef
53.
go back to reference Gubán D, Tompos A, Bakos I, Vass Á, Pászti Z, Szabó EG, Sajó IE, Borbáth I (2017) Preparation of CO-tolerant anode electrocatalysts for polymer electrolyte membrane fuel cells. Int J Hydrog Energy 42:13741–13753CrossRef Gubán D, Tompos A, Bakos I, Vass Á, Pászti Z, Szabó EG, Sajó IE, Borbáth I (2017) Preparation of CO-tolerant anode electrocatalysts for polymer electrolyte membrane fuel cells. Int J Hydrog Energy 42:13741–13753CrossRef
54.
go back to reference Vass Á, Borbáth I, Pászti Z, Bakos I, Sajó IE, Németh P, Tompos A (2017) Effect of Mo incorporation on electrocatalytic performance of Ti-Mo mixed oxide-carbon composite supported Pt electrocatalysts. React Kinet Mech Catal 121:141–160CrossRef Vass Á, Borbáth I, Pászti Z, Bakos I, Sajó IE, Németh P, Tompos A (2017) Effect of Mo incorporation on electrocatalytic performance of Ti-Mo mixed oxide-carbon composite supported Pt electrocatalysts. React Kinet Mech Catal 121:141–160CrossRef
55.
go back to reference Alcaide F, Álvarez G, Tsiouvaras N, Pena MA, Fierro JLG, Martínez-Huerta MV (2011) Electrooxidation of H2/CO on carbon-supported PtRu-MoOx nanoparticles for polymer electrolyte fuel cells. Int J Hydrog Energy 36:14590–14598CrossRef Alcaide F, Álvarez G, Tsiouvaras N, Pena MA, Fierro JLG, Martínez-Huerta MV (2011) Electrooxidation of H2/CO on carbon-supported PtRu-MoOx nanoparticles for polymer electrolyte fuel cells. Int J Hydrog Energy 36:14590–14598CrossRef
57.
go back to reference Mohai M (2004) XPS MultiQuant: multimodel XPS quantification software. Surf Interface Anal 36(8):828–832CrossRef Mohai M (2004) XPS MultiQuant: multimodel XPS quantification software. Surf Interface Anal 36(8):828–832CrossRef
58.
go back to reference Geiger S, Cherevko S, Mayrhofer KJJ (2015) Dissolution of platinum in presence of chloride traces. Electrochim Acta 179:24–31CrossRef Geiger S, Cherevko S, Mayrhofer KJJ (2015) Dissolution of platinum in presence of chloride traces. Electrochim Acta 179:24–31CrossRef
59.
go back to reference Shrestha BR, Tada E, Nishikata A (2014) Effect of chloride on platinum dissolution. Electrochim Acta 143:161–167CrossRef Shrestha BR, Tada E, Nishikata A (2014) Effect of chloride on platinum dissolution. Electrochim Acta 143:161–167CrossRef
60.
go back to reference Aguiar ACR, Olivi P (2010) Characterization and voltammetric behavior of PtyMozOx/C electrodes prepared by the thermal decomposition of polymeric precursors. J Power Sources 195:3485–3489CrossRef Aguiar ACR, Olivi P (2010) Characterization and voltammetric behavior of PtyMozOx/C electrodes prepared by the thermal decomposition of polymeric precursors. J Power Sources 195:3485–3489CrossRef
61.
go back to reference Ioroi T, Fujiwara N, Siroma Z, Yasuda K, Miyazaki Y (2002) Platinum and molybdenum oxide deposited carbon electrocatalyst for oxidation of hydrogen containing carbon monoxide. Electrochem Commun 4:442–446CrossRef Ioroi T, Fujiwara N, Siroma Z, Yasuda K, Miyazaki Y (2002) Platinum and molybdenum oxide deposited carbon electrocatalyst for oxidation of hydrogen containing carbon monoxide. Electrochem Commun 4:442–446CrossRef
62.
go back to reference Jaksic JM, Vracar Lj, Neophytides SG, Zafeiratos S, Papakonstantinou G, Krstajic NV, Jaksic MM (2005) Structural effects on kinetic properties for hydrogen electrode reactions and CO tolerance along Mo-Pt phase diagram. Surf Sci 598:156–173CrossRef Jaksic JM, Vracar Lj, Neophytides SG, Zafeiratos S, Papakonstantinou G, Krstajic NV, Jaksic MM (2005) Structural effects on kinetic properties for hydrogen electrode reactions and CO tolerance along Mo-Pt phase diagram. Surf Sci 598:156–173CrossRef
63.
go back to reference Lebedeva NP, Janssen GJM (2005) On the preparation and stability of bimetallic PtMo/C anodes for proton-exchange membrane fuel cells. Electrochim Acta 51:29–40CrossRef Lebedeva NP, Janssen GJM (2005) On the preparation and stability of bimetallic PtMo/C anodes for proton-exchange membrane fuel cells. Electrochim Acta 51:29–40CrossRef
64.
go back to reference Wang GF, Van Hove MA, Ross PN, Baskes MI (2005) Quantitative prediction of surface segregation in bimetallic Pt-M alloy nanoparticles (M = Ni, Re, Mo). Prog Surf Sci 79:28–45 Wang GF, Van Hove MA, Ross PN, Baskes MI (2005) Quantitative prediction of surface segregation in bimetallic Pt-M alloy nanoparticles (M = Ni, Re, Mo). Prog Surf Sci 79:28–45
65.
go back to reference Guillén-Villafuerte O, García G, Rodríguez JL, Pastor E, Guil-López R, Nieto E, Fierro JLG (2013) Preliminary studies of the electrochemical performance of Pt/X@MoO3/C (X = Mo2C, MoO2, Mo0) catalysts for the anode of a DMFC: influence of the Pt loading and Mo-phase. Int J Hydrog Energy 38:7811–7821CrossRef Guillén-Villafuerte O, García G, Rodríguez JL, Pastor E, Guil-López R, Nieto E, Fierro JLG (2013) Preliminary studies of the electrochemical performance of Pt/X@MoO3/C (X = Mo2C, MoO2, Mo0) catalysts for the anode of a DMFC: influence of the Pt loading and Mo-phase. Int J Hydrog Energy 38:7811–7821CrossRef
66.
go back to reference Baltrusaitis J, Mendoza-Sanchez B, Fernandez V, Veenstra R, Dukstiene N, Roberts A, Fairley N (2015) Generalized molybdenum oxide surface chemical state XPS determination via informed amorphous sample model. Appl Surf Sci 326:151–161CrossRef Baltrusaitis J, Mendoza-Sanchez B, Fernandez V, Veenstra R, Dukstiene N, Roberts A, Fairley N (2015) Generalized molybdenum oxide surface chemical state XPS determination via informed amorphous sample model. Appl Surf Sci 326:151–161CrossRef
67.
go back to reference Schroeder T, Zegenhagen J, Magg N, Immaraporn B, Freund HJ (2004) Formation of a faceted MoO2 epilayer on Mo(112) studied by XPS, UPS and STM. Surf Sci 552:85–97CrossRef Schroeder T, Zegenhagen J, Magg N, Immaraporn B, Freund HJ (2004) Formation of a faceted MoO2 epilayer on Mo(112) studied by XPS, UPS and STM. Surf Sci 552:85–97CrossRef
68.
go back to reference Scanlon DO, Watson GW, Payne DJ, Atkinson GR, Egdell RG, Law DSL (2010) Theoretical and experimental study of the electronic structures of MoO3 and MoO2. J Phys Chem C 114:4636–4645CrossRef Scanlon DO, Watson GW, Payne DJ, Atkinson GR, Egdell RG, Law DSL (2010) Theoretical and experimental study of the electronic structures of MoO3 and MoO2. J Phys Chem C 114:4636–4645CrossRef
Metadata
Title
Design and Investigation of Molybdenum Modified Platinum Surfaces for Modeling of CO Tolerant Electrocatalysts
Authors
I. Bakos
I. Borbáth
Á. Vass
Z. Pászti
A. Tompos
Publication date
24-08-2018
Publisher
Springer US
Published in
Topics in Catalysis / Issue 14/2018
Print ISSN: 1022-5528
Electronic ISSN: 1572-9028
DOI
https://doi.org/10.1007/s11244-018-1035-x

Other articles of this Issue 14/2018

Topics in Catalysis 14/2018 Go to the issue

Premium Partners