Skip to main content
Top

2018 | OriginalPaper | Chapter

7. Design and Optimization of ICs for Wearable EEG Sensors

Authors : Jiawei Xu, Rachit Mohan, Nick Van Helleputte, Srinjoy Mitra

Published in: CMOS Circuits for Biological Sensing and Processing

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In modern clinical practice, scalp electroencephalography (EEG) recording is one of the most important noninvasive procedures to measure the electrical activity of the human brain. EEG has a wide range of applications from brain disorder diagnosis, stroke rehabilitation, brain-computer interface (BCI), and gaming. Conventionally, EEG signal is obtained by placing electrodes on the scalp along with conductive gel to reduce the electrode-tissue contact impedance. The recorded EEG signal between two electrodes is a differential voltage representing the average intensity and spontaneous activities of a group of neurons underlying the skull. In time domain, EEG response with peaks and valleys indicates the power spectrum associate with brain activities. In frequency domain, most of the signal falls within a narrow band of 0.5–100 Hz. Some of the prominent frequency bands are called alpha (7–14 Hz), beta (15–30 Hz), theta (4–7 Hz), and delta (1–4 Hz), each having characteristic neurophysiological traits.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Teplan, Fundamentals of EEG measurement. Meas. Sci. Rev. 2, 1–11 (2002) M. Teplan, Fundamentals of EEG measurement. Meas. Sci. Rev. 2, 1–11 (2002)
2.
go back to reference A. Ramos-Murguialday, D. Broetz, M. Rea, et al., Brain–machine interface in chronic stroke rehabilitation: a controlled study. Ann. Neurol. 74(1), 100–108 (2013)CrossRef A. Ramos-Murguialday, D. Broetz, M. Rea, et al., Brain–machine interface in chronic stroke rehabilitation: a controlled study. Ann. Neurol. 74(1), 100–108 (2013)CrossRef
3.
go back to reference L.F. Nicolas-Alonso, J. Gomez-Gil, Brain computer interfaces, a review. Sensors 12, 1211–1279 (2012)CrossRef L.F. Nicolas-Alonso, J. Gomez-Gil, Brain computer interfaces, a review. Sensors 12, 1211–1279 (2012)CrossRef
4.
go back to reference L.D. Liao et al., Gaming control using a wearable and wireless EEG-based brain-computer interface device with novel dry foam-based sensors. J. Neuroeng. Rehabil. 9(1), 5 (2012)CrossRef L.D. Liao et al., Gaming control using a wearable and wireless EEG-based brain-computer interface device with novel dry foam-based sensors. J. Neuroeng. Rehabil. 9(1), 5 (2012)CrossRef
5.
go back to reference J. Malmivuo, R. Plonsey, Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields (Oxford University Press, New York, 1995)CrossRef J. Malmivuo, R. Plonsey, Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields (Oxford University Press, New York, 1995)CrossRef
7.
go back to reference S.J. Van Albada, P.A. Robinson, Relationships between Electroencephalographic Spectral Peaks Across Frequency Bands. Front. Hum. Neurosci 7, 56 (2013.) PMC. Web. 10 Sept. 2017 S.J. Van Albada, P.A. Robinson, Relationships between Electroencephalographic Spectral Peaks Across Frequency Bands. Front. Hum. Neurosci 7, 56 (2013.) PMC. Web. 10 Sept. 2017
8.
go back to reference S.N. Abdulkader et al., Brain computer interfacing: applications and challenges. Egypt. Inf. J. 16(2), 213–230 (2015)CrossRef S.N. Abdulkader et al., Brain computer interfacing: applications and challenges. Egypt. Inf. J. 16(2), 213–230 (2015)CrossRef
12.
go back to reference S. Patki et al., Wireless EEG system with real time impedance monitoring and active electrodes, in IEEE Biomedical Circuits and Systems Conference (BioCAS), Hsinchu, pp. 108–111, November 2012 S. Patki et al., Wireless EEG system with real time impedance monitoring and active electrodes, in IEEE Biomedical Circuits and Systems Conference (BioCAS), Hsinchu, pp. 108–111, November 2012
13.
go back to reference Y.M. Chi, T.P. Jung, G. Cauwenberghs, Dry-contact and noncontact biopotential electrodes: Methodological review. IEEE Rev. Biomed. Eng. 3, 106–119 (2010)CrossRef Y.M. Chi, T.P. Jung, G. Cauwenberghs, Dry-contact and noncontact biopotential electrodes: Methodological review. IEEE Rev. Biomed. Eng. 3, 106–119 (2010)CrossRef
14.
go back to reference IEC 60601-2-26: Medical electrical equipment – Part 2-26: Particular requirements for the basic safety and essential performance of electroencephalographs (2012) IEC 60601-2-26: Medical electrical equipment – Part 2-26: Particular requirements for the basic safety and essential performance of electroencephalographs (2012)
15.
go back to reference Y.-H. Chen et al., Comfortable polymer dry electrodes for high quality ECG and EEG recording. Sensors 12, 23758–23780 (2014)CrossRef Y.-H. Chen et al., Comfortable polymer dry electrodes for high quality ECG and EEG recording. Sensors 12, 23758–23780 (2014)CrossRef
16.
go back to reference R. Dozio, A. Baba, et al., Time based measurement of the impedance of the skin-electrode interface for dry electrode ECG recording. Proc. IEEE EMBC, 5001–5004 (2007) R. Dozio, A. Baba, et al., Time based measurement of the impedance of the skin-electrode interface for dry electrode ECG recording. Proc. IEEE EMBC, 5001–5004 (2007)
17.
go back to reference C.T. Lin, L.D. Liao, et al., Novel dry polymer foam electrodes for long-term EEG measurement. IEEE Trans. Biomed. Eng. 58(5), 1200–1207 (2010) C.T. Lin, L.D. Liao, et al., Novel dry polymer foam electrodes for long-term EEG measurement. IEEE Trans. Biomed. Eng. 58(5), 1200–1207 (2010)
18.
go back to reference Y.H. Chen, M. Op de Beeck, et al., Comb-shaped polymer-based dry electrodes for EEG/ECG measurements with high user comfort. IEEE EMBC, 551–554 (2013) Y.H. Chen, M. Op de Beeck, et al., Comb-shaped polymer-based dry electrodes for EEG/ECG measurements with high user comfort. IEEE EMBC, 551–554 (2013)
20.
go back to reference S. Lee, J. Kruse, Biopotential electrode sensors in ECG/EEG/EMG systems, ADI, 2008 S. Lee, J. Kruse, Biopotential electrode sensors in ECG/EEG/EMG systems, ADI, 2008
21.
go back to reference M.R. Nuwer et al., IFCN standards for digital recording of clinical EEG. EEG. Clin. Neuro. 106(3), 259–261 (1998)CrossRef M.R. Nuwer et al., IFCN standards for digital recording of clinical EEG. EEG. Clin. Neuro. 106(3), 259–261 (1998)CrossRef
22.
go back to reference B.B. Winter, J.G. Webster, Driven-right-leg circuit design. IEEE Trans. Biomed. Eng. 1, 62–66 (1983)CrossRef B.B. Winter, J.G. Webster, Driven-right-leg circuit design. IEEE Trans. Biomed. Eng. 1, 62–66 (1983)CrossRef
23.
go back to reference J. Xu, R.F. Yazicioglu, et al., A 160 μW 8-channel active electrode system for EEG monitoring. IEEE Trans. Biomed. Circuits Syst. 6, 555–567 (2011)CrossRef J. Xu, R.F. Yazicioglu, et al., A 160 μW 8-channel active electrode system for EEG monitoring. IEEE Trans. Biomed. Circuits Syst. 6, 555–567 (2011)CrossRef
24.
go back to reference J. Xu, S. Mitra, et al., A wearable 8-channel active-electrode EEG/ETI acquisition system for body area networks. IEEE J. Solid State Circuits 49(9), 2005–2016 (2014)CrossRef J. Xu, S. Mitra, et al., A wearable 8-channel active-electrode EEG/ETI acquisition system for body area networks. IEEE J. Solid State Circuits 49(9), 2005–2016 (2014)CrossRef
25.
go back to reference T. Denison, K. Consoer, A. Kelly, et al., A 2.2 μW 100 nV/√Hz chopper-stabilized instrumentation amplifier for chronic measurement of neural field potentials. IEEE J. Solid State Circuits 42(12), 2934–2945 (2007)CrossRef T. Denison, K. Consoer, A. Kelly, et al., A 2.2 μW 100 nV/√Hz chopper-stabilized instrumentation amplifier for chronic measurement of neural field potentials. IEEE J. Solid State Circuits 42(12), 2934–2945 (2007)CrossRef
26.
go back to reference Q. Fan et al., A 1.8 μW 60 nV/√Hz capacitively-coupled chopper instrumentation amplifier in 65 nm CMOS for wireless sensor nodes. IEEE J. Solid-State Circuits 46(7), 1534–1543 (2011)CrossRef Q. Fan et al., A 1.8 μW 60 nV/√Hz capacitively-coupled chopper instrumentation amplifier in 65 nm CMOS for wireless sensor nodes. IEEE J. Solid-State Circuits 46(7), 1534–1543 (2011)CrossRef
27.
go back to reference M. Altaf, C. Zhang, J. Yoo, A 16-channel patient-specific seizure onset and termination detection SoC with impedance-adaptive transcranial electrical stimulator. IEEE J. Solid-State Circuits 50(11), 2728–2740 (2015)CrossRef M. Altaf, C. Zhang, J. Yoo, A 16-channel patient-specific seizure onset and termination detection SoC with impedance-adaptive transcranial electrical stimulator. IEEE J. Solid-State Circuits 50(11), 2728–2740 (2015)CrossRef
28.
go back to reference F.M. Yaul, A.P. Chandrakasan, A sub-μW 36 nV/√Hz chopper amplifier for sensors using a noise-efficient inverter-based 0.2 V-supply input stage. Dig. ISSCC, 94–96 (2016) F.M. Yaul, A.P. Chandrakasan, A sub-μW 36 nV/√Hz chopper amplifier for sensors using a noise-efficient inverter-based 0.2 V-supply input stage. Dig. ISSCC, 94–96 (2016)
29.
go back to reference S. Song, M. Rooijakkers, P. Harpe, et al., A low-voltage chopper-stabilized amplifier for fetal ECG monitoring with a 1.41 power efficiency factor. IEEE Trans. Biomed. Circuits Syst. 9(2), 237–247 (2015)CrossRef S. Song, M. Rooijakkers, P. Harpe, et al., A low-voltage chopper-stabilized amplifier for fetal ECG monitoring with a 1.41 power efficiency factor. IEEE Trans. Biomed. Circuits Syst. 9(2), 237–247 (2015)CrossRef
30.
go back to reference N. Verma, A. Shoeb, J. Bohorquez, et al., A micro-power EEG acquisition SoC with integrated feature extraction processor for a chronic seizure detection system. IEEE J. Solid State Circuits 45(4), 804–816 (2010)CrossRef N. Verma, A. Shoeb, J. Bohorquez, et al., A micro-power EEG acquisition SoC with integrated feature extraction processor for a chronic seizure detection system. IEEE J. Solid State Circuits 45(4), 804–816 (2010)CrossRef
31.
go back to reference M. Guermandi et al., Active electrode IC combining EEG, electrical impedance tomography, continuous contact impedance measurement and power supply on a single wire. Proc ESSCIRC, 335–338 (2011) M. Guermandi et al., Active electrode IC combining EEG, electrical impedance tomography, continuous contact impedance measurement and power supply on a single wire. Proc ESSCIRC, 335–338 (2011)
32.
go back to reference J. Xu et al., Measurement and analysis of current noise in chopper amplifiers. IEEE J. Solid State Circuits 48(7), 1575–1584 (2013)CrossRef J. Xu et al., Measurement and analysis of current noise in chopper amplifiers. IEEE J. Solid State Circuits 48(7), 1575–1584 (2013)CrossRef
33.
go back to reference J. Xu, B. Büsze, et al., A 15-channel digital active electrode system for multi-parameter biopotential measurement. IEEE J. Solid State Circuits 50(9), 2090–2100 (2015)CrossRef J. Xu, B. Büsze, et al., A 15-channel digital active electrode system for multi-parameter biopotential measurement. IEEE J. Solid State Circuits 50(9), 2090–2100 (2015)CrossRef
34.
go back to reference R.F. Yazicioglu, P. Merken, R. Puers, et al., A 60 μW 60 nV/√Hz readout front-end for portable biopotential acquisition systems. IEEE J. Solid-State Circuits 42(5), 1100–1110 (2007)CrossRef R.F. Yazicioglu, P. Merken, R. Puers, et al., A 60 μW 60 nV/√Hz readout front-end for portable biopotential acquisition systems. IEEE J. Solid-State Circuits 42(5), 1100–1110 (2007)CrossRef
35.
go back to reference N. Van Helleputte et al., A multi-parameter signal-acquisition SoC for connected personal health applications. Dig. ISSCC 57, 314–315 (2014) N. Van Helleputte et al., A multi-parameter signal-acquisition SoC for connected personal health applications. Dig. ISSCC 57, 314–315 (2014)
36.
go back to reference R. Muller et al., A 0.013 mm2 2.5 μW, DC-coupled neural signal acquisition IC with 0.5 V supply. IEEE J. Solid-State Circuits 1, 232–243 (2012)CrossRef R. Muller et al., A 0.013 mm2 2.5 μW, DC-coupled neural signal acquisition IC with 0.5 V supply. IEEE J. Solid-State Circuits 1, 232–243 (2012)CrossRef
37.
go back to reference E.D. Kondylis et al., Detection of high-frequency oscillations by hybrid depth electrodes in standard clinical intracranial EEG recordings. Front. Neurol. 5, 1–10 (2014)CrossRef E.D. Kondylis et al., Detection of high-frequency oscillations by hybrid depth electrodes in standard clinical intracranial EEG recordings. Front. Neurol. 5, 1–10 (2014)CrossRef
38.
go back to reference W. Smith, B. Mogen, E. Fetz, B. Otis, A spectrum-equalizing analog front end for low-power electrocorticography recording. Dig. ESSCIRC, 107–110 (2014) W. Smith, B. Mogen, E. Fetz, B. Otis, A spectrum-equalizing analog front end for low-power electrocorticography recording. Dig. ESSCIRC, 107–110 (2014)
39.
go back to reference Y.M. Chi, G. Cauwenberghs, Micropower non-contact EEG electrode with active common-mode noise suppression and input capacitance cancellation. Proc. EMBC, 4218–4222 (2009) Y.M. Chi, G. Cauwenberghs, Micropower non-contact EEG electrode with active common-mode noise suppression and input capacitance cancellation. Proc. EMBC, 4218–4222 (2009)
40.
go back to reference R. Mohan, L. Yan, G. Gielen, et al., 0.35 V time-domain-based instrumentation amplifier. Electron. Lett. 50(21), 1511–1513 (2014)CrossRef R. Mohan, L. Yan, G. Gielen, et al., 0.35 V time-domain-based instrumentation amplifier. Electron. Lett. 50(21), 1511–1513 (2014)CrossRef
41.
go back to reference R. Mohan, S. Zaliasl, G.G.E. Gielen, C. Van Hoof, R.F. Yazicioglu, N. Van Helleputte, A 0.6-V, 0.015-mm2, time-based ECG readout for ambulatory applications in 40-nm CMOS. IEEE J. Solid State Circuits 52(1), 298–308 (2017)CrossRef R. Mohan, S. Zaliasl, G.G.E. Gielen, C. Van Hoof, R.F. Yazicioglu, N. Van Helleputte, A 0.6-V, 0.015-mm2, time-based ECG readout for ambulatory applications in 40-nm CMOS. IEEE J. Solid State Circuits 52(1), 298–308 (2017)CrossRef
42.
go back to reference W. Jiang, V. Hokhikyan, H. Chandrakumar, V. Karkare, D. Markovic, 28.6 A +50 mV linear-input-range VCO-based neural-recording front-end with digital nonlinearity correction. Dig. ISSCC, 484–485 (2016) W. Jiang, V. Hokhikyan, H. Chandrakumar, V. Karkare, D. Markovic, 28.6 A +50 mV linear-input-range VCO-based neural-recording front-end with digital nonlinearity correction. Dig. ISSCC, 484–485 (2016)
Metadata
Title
Design and Optimization of ICs for Wearable EEG Sensors
Authors
Jiawei Xu
Rachit Mohan
Nick Van Helleputte
Srinjoy Mitra
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-67723-1_7