Skip to main content
Top
Published in: Wireless Personal Communications 1/2013

01-09-2013

Design and Simulation of a Novel Micromachined Frequency Reconfigurable Microstrip Patch Antenna

Authors: Mahdi Nasiri, Hadi Mirzajani, Ehsan Atashzaban, Habib Badri Ghavifekr

Published in: Wireless Personal Communications | Issue 1/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, a novel model of a frequency reconfigurable microstrip patch antenna based on MEMS (microelectromechanical system) technology is introduced. Fabrication process of the proposed antenna is comprised of bulk and surface micromachining. Patch of the antenna is deposited over a silicon platform. The platform is created by structuring the silicon membrane which is formed through bulk micromachining of a silicon chip. The patch and the platform beneath it are discretized to facilitate their vertical displacement over underside air gap. Thermal actuation is used as driving mechanism. Operational mechanism of the antenna is such that by downward relocation of the patch, its resonant frequency shifts downward. Thermal actuators are connected to the platform and applying voltage to them cause downward shift in resonant frequency of the antenna. FEM (finite element method) simulations confirm mechanical and microwave performances of the antenna which are investigated by theoretical analyses. From mechanical point of view, antenna has tolerable mechanical stability and microwave point of view indicates that return losses are good (below \(-\)10 dB) and radiation patterns are very close to each other with reasonable gains. Moreover VSWR is less than 2 throughout the frequency tuning range. In the proposed antenna by applying a CMOS compatible voltage in the range of 0–4.5 V to each thermal actuator, the resonant frequency of the antenna shifts from 17.37 GHz in up-sate position to 15.07 GHz in down-state position. As a result of this frequency shift, a frequency tuning range of 2.3 GHz with bandwidths of 3.9 % in up-state and 1.4 % in down-state positions is achieved.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kiriazi, J., Ghali, H., Ragaie, H., & Haddara, H. (2003). Reconfigurable dual-band dipole antenna on silicon using series MEMS switches. In Proceedings of antennas and propagation society international symposium (Vol. 1, pp. 403–406). Kiriazi, J., Ghali, H., Ragaie, H., & Haddara, H. (2003). Reconfigurable dual-band dipole antenna on silicon using series MEMS switches. In Proceedings of antennas and propagation society international symposium (Vol. 1, pp. 403–406).
2.
go back to reference Majid, H. A., Rahim, M. K. A., Hamid, M. R., & Ismail, M. (2012). A compact frequency-reconfigurable narrowband microstrip slot antenna. IEEE Antennas and Wireless Propagation Letters, 11, 616–619. Majid, H. A., Rahim, M. K. A., Hamid, M. R., & Ismail, M. (2012). A compact frequency-reconfigurable narrowband microstrip slot antenna. IEEE Antennas and Wireless Propagation Letters, 11, 616–619.
3.
go back to reference Anagnostou, D. E., Zheng, G., Chryssomallis, M. T., Lyke, J. C., Ponchak, G. E., Papapolymerou, J., et al. (2006). Design, fabrication, and measurements of an RF-MEMS-based self-similar reconfigurable antenna. IEEE Transactions on Antennas and Propagation, 54(2), 422–432.CrossRef Anagnostou, D. E., Zheng, G., Chryssomallis, M. T., Lyke, J. C., Ponchak, G. E., Papapolymerou, J., et al. (2006). Design, fabrication, and measurements of an RF-MEMS-based self-similar reconfigurable antenna. IEEE Transactions on Antennas and Propagation, 54(2), 422–432.CrossRef
4.
go back to reference Erdil, E., Topalli, K., Unlu, M., Civi, O. A., & Akin, T. (2007). Frequency tunable microstrip patch antenna using RF MEMS technology. IEEE Transactions on Antennas and Propagation, 55(4), 1193–1196.CrossRef Erdil, E., Topalli, K., Unlu, M., Civi, O. A., & Akin, T. (2007). Frequency tunable microstrip patch antenna using RF MEMS technology. IEEE Transactions on Antennas and Propagation, 55(4), 1193–1196.CrossRef
5.
go back to reference Sathi, V., Ehteshami, N., & Nourinia, J. (2012). Optically-tuned frequency-reconfigurable microstrip antenna. IEEE Antennas and Wireless Propagation Letters, 11, 1018–1020.CrossRef Sathi, V., Ehteshami, N., & Nourinia, J. (2012). Optically-tuned frequency-reconfigurable microstrip antenna. IEEE Antennas and Wireless Propagation Letters, 11, 1018–1020.CrossRef
6.
go back to reference Mazlouman, S. J., Jiang, X. J., Mahanfar, A., Menon, C., & Vaughan, R. G. (2011). A reconfigurable patch antenna using liquid metal embedded in a silicone substrate. IEEE Transactions on Antennas and Propagation, 59, 4406–4412.CrossRef Mazlouman, S. J., Jiang, X. J., Mahanfar, A., Menon, C., & Vaughan, R. G. (2011). A reconfigurable patch antenna using liquid metal embedded in a silicone substrate. IEEE Transactions on Antennas and Propagation, 59, 4406–4412.CrossRef
7.
go back to reference Gupta, S. K., Kanaujia, B. K., & Pandey, G. P. (2012). Double MOS loaded circular microstrip antenna with airgap for mobile communication. Wireless Personal Communications doi:10.1007/s11277-012-0856-3. Gupta, S. K., Kanaujia, B. K., & Pandey, G. P. (2012). Double MOS loaded circular microstrip antenna with airgap for mobile communication. Wireless Personal Communications doi:10.​1007/​s11277-012-0856-3.
8.
go back to reference Al-Dahleh, R., Shafai, C., & Shafai, L. (2004). Frequency-agile microstrip patch antenna using a reconfigurable MEMS ground plane. Microwave and Optical Technology Letters, 43, 64–67.CrossRef Al-Dahleh, R., Shafai, C., & Shafai, L. (2004). Frequency-agile microstrip patch antenna using a reconfigurable MEMS ground plane. Microwave and Optical Technology Letters, 43, 64–67.CrossRef
9.
go back to reference Jr Jackson, R., & Ramadoss, R. (2007). A MEMS-based electrostatically tunable circular microstrip patch antenna. Journal of Micromechanics and Microengineering, 17, 1–8.CrossRef Jr Jackson, R., & Ramadoss, R. (2007). A MEMS-based electrostatically tunable circular microstrip patch antenna. Journal of Micromechanics and Microengineering, 17, 1–8.CrossRef
10.
go back to reference Balanis, C. A. (1997). Antenna theory: Analysis and design. New York: Wiley. Balanis, C. A. (1997). Antenna theory: Analysis and design. New York: Wiley.
11.
go back to reference Varadan, V. K., Vinoy, K. J., & Jose, K. A. (2002). RF MEMS and their applications. New York: Wiley.CrossRef Varadan, V. K., Vinoy, K. J., & Jose, K. A. (2002). RF MEMS and their applications. New York: Wiley.CrossRef
12.
go back to reference Papapolymerou, I., Drayton, R. F., & Katehi, L. (1998). Micromachined patch antennas. IEEE Transactions on Antennas and Propagation, 46, 275–283.CrossRef Papapolymerou, I., Drayton, R. F., & Katehi, L. (1998). Micromachined patch antennas. IEEE Transactions on Antennas and Propagation, 46, 275–283.CrossRef
13.
go back to reference Hoffman, R. K. (1987). Handbook of microwave integrated circuits. Norwood, MA: Artech House. Hoffman, R. K. (1987). Handbook of microwave integrated circuits. Norwood, MA: Artech House.
14.
go back to reference Meshram, M. K. (2007). Analysis of Lstrip proximity fed rectangular microstrip antenna for mobile base station. Microwave and Optical Technology Letters, 49, 1817–1824.CrossRef Meshram, M. K. (2007). Analysis of Lstrip proximity fed rectangular microstrip antenna for mobile base station. Microwave and Optical Technology Letters, 49, 1817–1824.CrossRef
15.
go back to reference Vajha, S., & Prasad, S. (2000). Design and modeling of proximity coupled patch antenna. In 2000 IEEE-APS conference on antennas and propagation for wireless communications (pp. 43–46). Vajha, S., & Prasad, S. (2000). Design and modeling of proximity coupled patch antenna. In 2000 IEEE-APS conference on antennas and propagation for wireless communications (pp. 43–46).
16.
go back to reference Edward, T. C. (1983). Foundation for microstrip circuit design. New York: Wiley. Edward, T. C. (1983). Foundation for microstrip circuit design. New York: Wiley.
17.
go back to reference Elbuken, C., Topaloglu, N., Nieva, P. M., Yavuz, M., & Huissoon, J. P. (2009). Modeling and analysis of a 2-DOF bidirectional electro-thermal microactuator. Microsystem Technology, 15(5), 713–722.CrossRef Elbuken, C., Topaloglu, N., Nieva, P. M., Yavuz, M., & Huissoon, J. P. (2009). Modeling and analysis of a 2-DOF bidirectional electro-thermal microactuator. Microsystem Technology, 15(5), 713–722.CrossRef
18.
go back to reference Yan, D. (2002). Mechanical design and modeling of MEMS thermal actuators for RF applications. Thesis: University of Waterloo. Yan, D. (2002). Mechanical design and modeling of MEMS thermal actuators for RF applications. Thesis: University of Waterloo.
19.
go back to reference Fraser, J., Hubbard, T., & Kujath, M. (2006). Theoretical and experimental analysis of an off-chip microgripper. Canadian Journal of Electrical and Computer Engineering, 31, 77–84.CrossRef Fraser, J., Hubbard, T., & Kujath, M. (2006). Theoretical and experimental analysis of an off-chip microgripper. Canadian Journal of Electrical and Computer Engineering, 31, 77–84.CrossRef
20.
go back to reference Huang, Q. A., & Lee, N. K. S. (1999). Analysis and design of polysilicon thermal flexure actuator. Journal of Micromechanics and Microengineering, 9, 64.CrossRef Huang, Q. A., & Lee, N. K. S. (1999). Analysis and design of polysilicon thermal flexure actuator. Journal of Micromechanics and Microengineering, 9, 64.CrossRef
21.
go back to reference Seng, A. B., Dahari, Z., & Sidek, O. (2009). Design and analysis of thermal microactuator. European Journal of Scientific Research, 35(2), 281–292. Seng, A. B., Dahari, Z., & Sidek, O. (2009). Design and analysis of thermal microactuator. European Journal of Scientific Research, 35(2), 281–292.
22.
go back to reference Varona, J., Tecpoyotl-Torres, M., Escobedo-Alatorre, J., & Hamoui, A. A. (2008). Design and fabrication of a MEMS thermal actuator for 3D optical switching applications. In Proceedings of IEEE/LEOS summer topical meetings (pp. 31–32). Varona, J., Tecpoyotl-Torres, M., Escobedo-Alatorre, J., & Hamoui, A. A. (2008). Design and fabrication of a MEMS thermal actuator for 3D optical switching applications. In Proceedings of IEEE/LEOS summer topical meetings (pp. 31–32).
23.
go back to reference Hsu, T. R. (2008). MEMS and microsystem: Design, manufacture and nanoscale engineering (2nd ed.). New Jersey: Wiley. Hsu, T. R. (2008). MEMS and microsystem: Design, manufacture and nanoscale engineering (2nd ed.). New Jersey: Wiley.
Metadata
Title
Design and Simulation of a Novel Micromachined Frequency Reconfigurable Microstrip Patch Antenna
Authors
Mahdi Nasiri
Hadi Mirzajani
Ehsan Atashzaban
Habib Badri Ghavifekr
Publication date
01-09-2013
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 1/2013
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-013-1012-4

Other articles of this Issue 1/2013

Wireless Personal Communications 1/2013 Go to the issue