Skip to main content
Top

2022 | OriginalPaper | Chapter

Design and Simulation of Smart Multipurpose Autonomous Ground Vehicle for Industrial Application

Authors : Gokula Vishnu Kirti Damodaran, J. B. Greesh Pranav, V. Siva Naga Yaswanth, Amartya Reddy Ponaka, Joshuva Arockia Dhanraj

Published in: Technology Innovation in Mechanical Engineering

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this new era of smart sensors, the field of robotics has enormously grown to its next level, the automation process in the industrial sector increases the fast product development as well as cost reduction and the manpower requirement can be decreased. In industries, autonomous mapping and navigating robot will play a vital role for the large warehouse where multiple task can be implemented and done using the autonomous navigating general-purpose robot, in this project an autonomous navigating robot is developed based on the lidar system using SLAM methodology which has the ability to map the environment on its own and able to find the shortest / convenient path to the destination, this robot uses the lidar as a input sensor based on the input taken it creates a map and finds the path for navigation even in the partially observable environment, This robot model uses the model based reflex agent as its environment and uses the HECTOR SLAM (simultaneous localization and mapping) along with adaptive Monte Carlo localization (AMCL) on a robot operating system (ROS) platform deployed on Raspberry Pi, using the combination of HECTOR SLAM and AMCL both the dynamic and static environment can be handled by the robot due to the adaptiveness of the robot this is highly reliable for the use in the industrial environment, HECTOR SLAM technique eliminates the requirement of odometry as this HECTOR SLAM takes the lidar position as a feedback system unlike other SLAM algorithms. This work also features the implementation of both A* algorithm and AMCL based on the use cases and the user preference. By giving an add-on device to this robot which can accomplish the task given by the user like transportation of products and cleaning the floor of the industries, security and surveillance and much more activities. This kind of robot helps to reduce the manpower required in the industrial sector and to automate the industrial sector which paves the way for the next generation of development in the industry.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Gatesichapakorn, S., Takamatsu, J., Ruchanurucks, M.: ROS based autonomous mobile robot navigation using 2D LiDAR and RGB-D camera. In: 2019 First International Symposium on Instrumentation, Control, Artificial Intelligence, and Robotics (ICA-SYMP) 2019 Jan 16, pp. 151–154, IEEE Gatesichapakorn, S., Takamatsu, J., Ruchanurucks, M.: ROS based autonomous mobile robot navigation using 2D LiDAR and RGB-D camera. In: 2019 First International Symposium on Instrumentation, Control, Artificial Intelligence, and Robotics (ICA-SYMP) 2019 Jan 16, pp. 151–154, IEEE
2.
go back to reference Yu, N., Zhang, B.: An improved HECTOR SLAM algorithm based on information fusion for mobile robot. In: 2018 5th IEEE International Conference on Cloud Computing and Intelligence Systems (CCIS) 2018 Nov 23, pp. 279–284, IEEE Yu, N., Zhang, B.: An improved HECTOR SLAM algorithm based on information fusion for mobile robot. In: 2018 5th IEEE International Conference on Cloud Computing and Intelligence Systems (CCIS) 2018 Nov 23, pp. 279–284, IEEE
3.
go back to reference Filipenko, M., Afanasyev, I.: Comparison of various SLAM systems for mobile robot in an indoor environment. In: 2018 International Conference on Intelligent Systems (IS), 2018 Sep 25, pp. 400–407, IEEE Filipenko, M., Afanasyev, I.: Comparison of various SLAM systems for mobile robot in an indoor environment. In: 2018 International Conference on Intelligent Systems (IS), 2018 Sep 25, pp. 400–407, IEEE
4.
go back to reference Chan, S.H., Wu, P.T., Fu, L.C.: Robust 2D indoor localization through laser SLAM and visual SLAM fusion. In: 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2018 Oct 7, pp. 1263–1268, IEEE Chan, S.H., Wu, P.T., Fu, L.C.: Robust 2D indoor localization through laser SLAM and visual SLAM fusion. In: 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2018 Oct 7, pp. 1263–1268, IEEE
5.
go back to reference Goyal, J.K., Nagla, K.S.: A new approach of path planning for mobile robots. In: 2014 International Conference on Advances in Computing, Communications, and Informatics (ICACCI), 2014 Sep 24, pp. 863–867, IEEE Goyal, J.K., Nagla, K.S.: A new approach of path planning for mobile robots. In: 2014 International Conference on Advances in Computing, Communications, and Informatics (ICACCI), 2014 Sep 24, pp. 863–867, IEEE
6.
go back to reference Kaoud, E., El-Sharief, M.A., El-Sebaie, M.G.: Scheduling problems of automated guided vehicles in job shop, flow shop, and container terminals. In: 2017 4th International Conference on Industrial Engineering and Applications (ICIEA), 2017 Apr 21, pp. 60–65, IEEE Kaoud, E., El-Sharief, M.A., El-Sebaie, M.G.: Scheduling problems of automated guided vehicles in job shop, flow shop, and container terminals. In: 2017 4th International Conference on Industrial Engineering and Applications (ICIEA), 2017 Apr 21, pp. 60–65, IEEE
7.
go back to reference Harik, E.H., Korsaeth, A.: Combining HECTOR SLAM and artificial potential field for autonomous navigation inside a greenhouse. Robotics 7(2), 22 (2018)CrossRef Harik, E.H., Korsaeth, A.: Combining HECTOR SLAM and artificial potential field for autonomous navigation inside a greenhouse. Robotics 7(2), 22 (2018)CrossRef
8.
go back to reference Matias, L.P., Santos, T.C., Wolf, D.F., Souza, J.R.: Path planning and autonomous navigation using AMCL and ad. In: 2015 12th Latin American Robotics Symposium and 2015 3rd Brazilian Symposium on Robotics (LARS-SBR), 2015 Oct 29, pp. 320–324, IEEE Matias, L.P., Santos, T.C., Wolf, D.F., Souza, J.R.: Path planning and autonomous navigation using AMCL and ad. In: 2015 12th Latin American Robotics Symposium and 2015 3rd Brazilian Symposium on Robotics (LARS-SBR), 2015 Oct 29, pp. 320–324, IEEE
9.
go back to reference Lamini, C., Benhlima, S., Elbekri, A.: Genetic algorithm based approach for autonomous mobile robot path planning. Proc. Comput. Sci. 1(127), 180–189 (2018)CrossRef Lamini, C., Benhlima, S., Elbekri, A.: Genetic algorithm based approach for autonomous mobile robot path planning. Proc. Comput. Sci. 1(127), 180–189 (2018)CrossRef
10.
go back to reference Ghorpade, D., Thakare, A.D., Doiphode, S.: Obstacle detection and avoidance algorithm for autonomous mobile robot using 2D LiDAR. In: 2017 International Conference on Computing, Communication, Control and Automation (ICCUBEA), 2017 Aug 17, pp. 1–6, IEEE Ghorpade, D., Thakare, A.D., Doiphode, S.: Obstacle detection and avoidance algorithm for autonomous mobile robot using 2D LiDAR. In: 2017 International Conference on Computing, Communication, Control and Automation (ICCUBEA), 2017 Aug 17, pp. 1–6, IEEE
Metadata
Title
Design and Simulation of Smart Multipurpose Autonomous Ground Vehicle for Industrial Application
Authors
Gokula Vishnu Kirti Damodaran
J. B. Greesh Pranav
V. Siva Naga Yaswanth
Amartya Reddy Ponaka
Joshuva Arockia Dhanraj
Copyright Year
2022
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-16-7909-4_11