Skip to main content
Top

2021 | OriginalPaper | Chapter

19. Design for Additive Manufacturing

Authors : Ian Gibson, David Rosen, Brent Stucker, Mahyar Khorasani

Published in: Additive Manufacturing Technologies

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The benefits and drawbacks of Additive Manufacturing Technologies enable designers to think beyond traditional design for manufacture and assembly constraints. AM has unique geometric, material, and customization benefits not provided by other production techniques. Likewise, AM has need for supports, typically produces anisotropic properties, and may require considerable post-processing. These and other benefits and drawbacks of AM have led to an increased emphasis on training designers to Design for Additive Manufacturing. In this chapter, we will revisit some of the concepts from prior chapters and introduce new concepts and ways of thinking to help designers take advantage of AM without falling into design pitfalls.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Design for manufacturing is typically abbreviated DFM, whereas design for manufacture and assembly is typically abbreviated as DFMA. To avoid confusion with the abbreviation for design for additive manufacturing (DFAM) we have utilized the shorter abbreviation DFM to encompass both design for manufacture and design for assembly.
 
Literature
1.
go back to reference Thompson, M. K., et al. (2016). Design for additive manufacturing: Trends, opportunities, considerations, and constraints. CIRP Annals, 65(2), 737–760.CrossRef Thompson, M. K., et al. (2016). Design for additive manufacturing: Trends, opportunities, considerations, and constraints. CIRP Annals, 65(2), 737–760.CrossRef
2.
go back to reference Susman, G. I. (1992). Integrating design and manufacturing for competitive advantage. New York/Oxford: Oxford University Press. Susman, G. I. (1992). Integrating design and manufacturing for competitive advantage. New York/Oxford: Oxford University Press.
3.
go back to reference Bralla, J. (1986). Handbook of product design for manufacturing: A practical guide to low-cost production. New York: McGraw-Hill. Bralla, J. (1986). Handbook of product design for manufacturing: A practical guide to low-cost production. New York: McGraw-Hill.
4.
go back to reference Boothroyd, G., Dewhurst, P., & Knight, W. A. (2001). Product design for manufacture and assembly, revised and expanded. Boca Raton: CRC Press. Boothroyd, G., Dewhurst, P., & Knight, W. A. (2001). Product design for manufacture and assembly, revised and expanded. Boca Raton: CRC Press.
5.
go back to reference Shah, J. J., & Wright, P. K. (2000). Developing theoretical foundations of DFM. In ASME design technical conference. Shah, J. J., & Wright, P. K. (2000). Developing theoretical foundations of DFM. In ASME design technical conference.
6.
go back to reference Rosen, D. W., et al. (2003). The rapid tooling testbed: A distributed design-for-manufacturing system. Rapid Prototyping Journal, 9(3), 122–132.CrossRef Rosen, D. W., et al. (2003). The rapid tooling testbed: A distributed design-for-manufacturing system. Rapid Prototyping Journal, 9(3), 122–132.CrossRef
8.
go back to reference Hague, R. (2006). Unlocking the design potential of rapid manufacturing. In Rapid manufacturing: An industrial revolution for the digital age. Chichester: Wiley. Hague, R. (2006). Unlocking the design potential of rapid manufacturing. In Rapid manufacturing: An industrial revolution for the digital age. Chichester: Wiley.
9.
go back to reference Mavroidis, C., et al. (2001). Fabrication of non-assembly mechanisms and robotic systems using rapid prototyping. Journal of Mechanical Design, 123(4), 516–524.CrossRef Mavroidis, C., et al. (2001). Fabrication of non-assembly mechanisms and robotic systems using rapid prototyping. Journal of Mechanical Design, 123(4), 516–524.CrossRef
10.
go back to reference Kataria, A., & Rosen, D. W. (2001). Building around inserts: Methods for fabricating complex devices in stereolithography. Rapid Prototyping Journal, 7(5), 253–262.CrossRef Kataria, A., & Rosen, D. W. (2001). Building around inserts: Methods for fabricating complex devices in stereolithography. Rapid Prototyping Journal, 7(5), 253–262.CrossRef
11.
go back to reference Binnard, M. (2012). Design by composition for rapid prototyping (Vol. 525). Boston, MA: Springer Science & Business Media. Binnard, M. (2012). Design by composition for rapid prototyping (Vol. 525). Boston, MA: Springer Science & Business Media.
12.
go back to reference Patil, L., et al. (2000). Representation of heterogeneous objects in ISO 10303 (STEP). In ASME International Mechanical Engineering Congress and Exposition, Orlando. Patil, L., et al. (2000). Representation of heterogeneous objects in ISO 10303 (STEP). In ASME International Mechanical Engineering Congress and Exposition, Orlando.
14.
go back to reference Ulrich, K. T., & Seering, W. P. (1990). Function sharing in mechanical design. Design Studies, 11(4), 223–234.CrossRef Ulrich, K. T., & Seering, W. P. (1990). Function sharing in mechanical design. Design Studies, 11(4), 223–234.CrossRef
16.
go back to reference Gibson, L. J., & Ashby, M. F. (1999). Cellular solids: Structure and properties. Cambridge: Cambridge University Press.MATH Gibson, L. J., & Ashby, M. F. (1999). Cellular solids: Structure and properties. Cambridge: Cambridge University Press.MATH
17.
go back to reference Ashby, M., et al. (2001). Metal foams: A design guide. Applied Mechanics Reviews, 54, B105.CrossRef Ashby, M., et al. (2001). Metal foams: A design guide. Applied Mechanics Reviews, 54, B105.CrossRef
18.
go back to reference Deshpande, V. S., Fleck, N. A., & Ashby, M. F. (2001). Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids, 49(8), 1747–1769.MATHCrossRef Deshpande, V. S., Fleck, N. A., & Ashby, M. F. (2001). Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids, 49(8), 1747–1769.MATHCrossRef
19.
go back to reference Wang, A.-J., & McDowell, D. (2003). Optimization of a metal honeycomb sandwich beam-bar subjected to torsion and bending. International Journal of Solids and Structures, 40(9), 2085–2099.MATHCrossRef Wang, A.-J., & McDowell, D. (2003). Optimization of a metal honeycomb sandwich beam-bar subjected to torsion and bending. International Journal of Solids and Structures, 40(9), 2085–2099.MATHCrossRef
20.
go back to reference Wang, J., et al. (2003). On the performance of truss panels with Kagome cores. International Journal of Solids and Structures, 40(25), 6981–6988.CrossRef Wang, J., et al. (2003). On the performance of truss panels with Kagome cores. International Journal of Solids and Structures, 40(25), 6981–6988.CrossRef
21.
go back to reference Nguyen, J., Park, S.-I., & Rosen, D. (2013). Heuristic optimization method for cellular structure design of light weight components. International Journal of Precision Engineering and Manufacturing, 14(6), 1071–1078.CrossRef Nguyen, J., Park, S.-I., & Rosen, D. (2013). Heuristic optimization method for cellular structure design of light weight components. International Journal of Precision Engineering and Manufacturing, 14(6), 1071–1078.CrossRef
22.
go back to reference Lou, S., et al. (2019). Surface texture evaluation of additively manufactured metallic cellular scaffolds for acetabular implants using X-ray computed tomography. Bio-Design and Manufacturing, 2(2), 55–64.CrossRef Lou, S., et al. (2019). Surface texture evaluation of additively manufactured metallic cellular scaffolds for acetabular implants using X-ray computed tomography. Bio-Design and Manufacturing, 2(2), 55–64.CrossRef
23.
go back to reference Zhang, A. P., et al. (2012). Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography. Advanced Materials, 24(31), 4266–4270.CrossRef Zhang, A. P., et al. (2012). Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography. Advanced Materials, 24(31), 4266–4270.CrossRef
24.
go back to reference Rosen, D. W. (2007). Computer-aided design for additive manufacturing of cellular structures. Computer-Aided Design and Applications, 4(5), 585–594.CrossRef Rosen, D. W. (2007). Computer-aided design for additive manufacturing of cellular structures. Computer-Aided Design and Applications, 4(5), 585–594.CrossRef
27.
go back to reference ASTM International. (2018). ISO/ASTM52910-18 Additive manufacturing — Design — Requirements, guidelines and recommendations. West Conshohocken: ASTM International. ASTM International. (2018). ISO/ASTM52910-18 Additive manufacturing — Design — Requirements, guidelines and recommendations. West Conshohocken: ASTM International.
28.
go back to reference ASTM International. (2019). ISO/ASTM52911-2-19 Additive manufacturing — Design — Part 2: Laser-based powder bed fusion of polymers. West Conshohocken: ASTM International. ASTM International. (2019). ISO/ASTM52911-2-19 Additive manufacturing — Design — Part 2: Laser-based powder bed fusion of polymers. West Conshohocken: ASTM International.
29.
go back to reference ASTM International. (2019). ISO/ASTM52911-1-19 Additive manufacturing — Design — Part 1: Laser-based powder bed fusion of metals. West Conshohocken: ASTM International. ASTM International. (2019). ISO/ASTM52911-1-19 Additive manufacturing — Design — Part 1: Laser-based powder bed fusion of metals. West Conshohocken: ASTM International.
30.
go back to reference Wu, J.J., et al. (2018). 4D printing: History and recent progress. Chinese Journal of Polymer Science, 36(5), 563–575. Wu, J.J., et al. (2018). 4D printing: History and recent progress. Chinese Journal of Polymer Science, 36(5), 563–575.
31.
go back to reference Tibbits, S., et al. (2014). 4D Printing and universal transformation. In Material agency. New York: Springer. Tibbits, S., et al. (2014). 4D Printing and universal transformation. In Material agency. New York: Springer.
32.
go back to reference Yang, Z., et al. (2006). Thermal and UV shape shifting of surface topography. Journal of the American Chemical Society, 128(4), 1074–1075.CrossRef Yang, Z., et al. (2006). Thermal and UV shape shifting of surface topography. Journal of the American Chemical Society, 128(4), 1074–1075.CrossRef
33.
go back to reference Momeni, F., et al. (2017). A review of 4D printing. Materials & Design, 122, 42–79.CrossRef Momeni, F., et al. (2017). A review of 4D printing. Materials & Design, 122, 42–79.CrossRef
34.
go back to reference Monzón, M., et al. (2017). 4D printing: Processability and measurement of recovery force in shape memory polymers. The International Journal of Advanced Manufacturing Technology, 89(5–8), 1827–1836.CrossRef Monzón, M., et al. (2017). 4D printing: Processability and measurement of recovery force in shape memory polymers. The International Journal of Advanced Manufacturing Technology, 89(5–8), 1827–1836.CrossRef
35.
go back to reference Jamal, M., et al. (2013). Bio-origami hydrogel scaffolds composed of photocrosslinked PEG bilayers. Advanced Healthcare Materials, 2(8), 1142–1150.CrossRef Jamal, M., et al. (2013). Bio-origami hydrogel scaffolds composed of photocrosslinked PEG bilayers. Advanced Healthcare Materials, 2(8), 1142–1150.CrossRef
36.
go back to reference Wu, J., et al. (2016). Multi-shape active composites by 3D printing of digital shape memory polymers. Scientific Reports, 6, 24224.CrossRef Wu, J., et al. (2016). Multi-shape active composites by 3D printing of digital shape memory polymers. Scientific Reports, 6, 24224.CrossRef
37.
go back to reference Zhang, Q., Zhang, K., & Hu, G. (2016). Smart three-dimensional lightweight structure triggered from a thin composite sheet via 3D printing technique. Scientific Reports, 6, 22431.CrossRef Zhang, Q., Zhang, K., & Hu, G. (2016). Smart three-dimensional lightweight structure triggered from a thin composite sheet via 3D printing technique. Scientific Reports, 6, 22431.CrossRef
38.
go back to reference Gladman, A. S., et al. (2016). Biomimetic 4D printing. Nature Materials, 15(4), 413.CrossRef Gladman, A. S., et al. (2016). Biomimetic 4D printing. Nature Materials, 15(4), 413.CrossRef
40.
go back to reference Beaman, J., et al. (2004). Assessment of European research and development in additive. In Subtractive manufacturing, final report from WTEC panel. Beaman, J., et al. (2004). Assessment of European research and development in additive. In Subtractive manufacturing, final report from WTEC panel.
41.
go back to reference Kytannen, J. (2006). Rapid manufacture for the retail industry. In Rapid manufacturing: An industrial revolution for the digital age. Chichester: Wiley. Kytannen, J. (2006). Rapid manufacture for the retail industry. In Rapid manufacturing: An industrial revolution for the digital age. Chichester: Wiley.
42.
go back to reference Ensz, M. T., Storti, D. W., & Ganter, M. A. (1998). Implicit methods for geometry creation. International Journal of Computational Geometry and Applications, 8(05n06), 509–536.MathSciNetMATHCrossRef Ensz, M. T., Storti, D. W., & Ganter, M. A. (1998). Implicit methods for geometry creation. International Journal of Computational Geometry and Applications, 8(05n06), 509–536.MathSciNetMATHCrossRef
43.
go back to reference Shapiro, V., & Tsukanov, I. (1999). Meshfree simulation of deforming domains. Computer-Aided Design and Applications, 31(7), 459–471.MATHCrossRef Shapiro, V., & Tsukanov, I. (1999). Meshfree simulation of deforming domains. Computer-Aided Design and Applications, 31(7), 459–471.MATHCrossRef
44.
go back to reference Zeid, I. (2004). Mastering CAD/CAM with engineering subscription card. USA: McGraw-Hill. Zeid, I. (2004). Mastering CAD/CAM with engineering subscription card. USA: McGraw-Hill.
45.
go back to reference Rvachev, V. L., et al. (2001). Transfinite interpolation over implicitly defined sets. Computer Aided Geometric Design, 18(3), 195–220.MathSciNetMATHCrossRef Rvachev, V. L., et al. (2001). Transfinite interpolation over implicitly defined sets. Computer Aided Geometric Design, 18(3), 195–220.MathSciNetMATHCrossRef
46.
go back to reference ASTM International. (2016). ASTM E1325-16, Standard terminology relating to design of experiments. West Conshohocken: ASTM International. ASTM International. (2016). ASTM E1325-16, Standard terminology relating to design of experiments. West Conshohocken: ASTM International.
47.
go back to reference ASTM International. (2017). ASTM E122-17, Standard practice for calculating sample size to estimate, with specified precision, the average for a characteristic of a lot or process. West Conshohocken: ASTM International. ASTM International. (2017). ASTM E122-17, Standard practice for calculating sample size to estimate, with specified precision, the average for a characteristic of a lot or process. West Conshohocken: ASTM International.
48.
go back to reference Roy, R. K. (2010). A primer on the Taguchi method. USA (Michigan): Society of Manufacturing Engineers. Roy, R. K. (2010). A primer on the Taguchi method. USA (Michigan): Society of Manufacturing Engineers.
49.
go back to reference Wu, H. (2013). Application of orthogonal experimental design for the automatic software testing. In Applied mechanics and materials. Durnten-Zurich: Trans Tech Publications. Wu, H. (2013). Application of orthogonal experimental design for the automatic software testing. In Applied mechanics and materials. Durnten-Zurich: Trans Tech Publications.
50.
go back to reference Michell, A. G. M. (1904). LVIII. The limits of economy of material in frame-structures. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 8(47), 589–597.MATHCrossRef Michell, A. G. M. (1904). LVIII. The limits of economy of material in frame-structures. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 8(47), 589–597.MATHCrossRef
51.
go back to reference Dewhurst, P., & Srithongchai, S. (2005). An investigation of minimum-weight dual-material symmetrically loaded wheels and torsion arms. Journal of Applied Mechanics, 72(2), 196–202.MATHCrossRef Dewhurst, P., & Srithongchai, S. (2005). An investigation of minimum-weight dual-material symmetrically loaded wheels and torsion arms. Journal of Applied Mechanics, 72(2), 196–202.MATHCrossRef
52.
go back to reference Baldick, R. (2006). Applied optimization: Formulation and algorithms for engineering systems. Cambridge: Cambridge University Press.MATHCrossRef Baldick, R. (2006). Applied optimization: Formulation and algorithms for engineering systems. Cambridge: Cambridge University Press.MATHCrossRef
53.
go back to reference Xia, Q., Wang, M. Y., & Shi, T. (2013). A method for shape and topology optimization of truss-like structure. Structural and Multidisciplinary Optimization, 47(5), 687–697.MathSciNetMATHCrossRef Xia, Q., Wang, M. Y., & Shi, T. (2013). A method for shape and topology optimization of truss-like structure. Structural and Multidisciplinary Optimization, 47(5), 687–697.MathSciNetMATHCrossRef
54.
go back to reference Patel, J., & Choi, S.-K. (2012). Classification approach for reliability-based topology optimization using probabilistic neural networks. Structural and Multidisciplinary Optimization, 45(4), 529–543.MathSciNetMATHCrossRef Patel, J., & Choi, S.-K. (2012). Classification approach for reliability-based topology optimization using probabilistic neural networks. Structural and Multidisciplinary Optimization, 45(4), 529–543.MathSciNetMATHCrossRef
55.
go back to reference Bendsoe, M. P. (1989). Optimal shape design as a material distribution problem. Structural Optimization, 1(4), 193–202.CrossRef Bendsoe, M. P. (1989). Optimal shape design as a material distribution problem. Structural Optimization, 1(4), 193–202.CrossRef
56.
go back to reference Sigmund, O. (2001). A 99 line topology optimization code written in Matlab. Structural and Multidisciplinary Optimization, 21(2), 120–127.CrossRef Sigmund, O. (2001). A 99 line topology optimization code written in Matlab. Structural and Multidisciplinary Optimization, 21(2), 120–127.CrossRef
57.
go back to reference Wang, M. Y., Wang, X., & Guo, D. (2003). A level set method for structural topology optimization. Computer Methods in Applied Mechanics and Engineering, 192(1), 227–246.MathSciNetMATHCrossRef Wang, M. Y., Wang, X., & Guo, D. (2003). A level set method for structural topology optimization. Computer Methods in Applied Mechanics and Engineering, 192(1), 227–246.MathSciNetMATHCrossRef
58.
go back to reference Leary, M., et al. (2014). Optimal topology for additive manufacture: A method for enabling additive manufacture of support-free optimal structures. Materials & Design, 63, 678–690.CrossRef Leary, M., et al. (2014). Optimal topology for additive manufacture: A method for enabling additive manufacture of support-free optimal structures. Materials & Design, 63, 678–690.CrossRef
59.
go back to reference Leary, M. (2019). Design for additive manufacturing. Amsterdam: Elsevier. Leary, M. (2019). Design for additive manufacturing. Amsterdam: Elsevier.
60.
go back to reference Langelaar, M. (2017). An additive manufacturing filter for topology optimization of print-ready designs. Structural and Multidisciplinary Optimization, 55(3), 871–883.MathSciNetCrossRef Langelaar, M. (2017). An additive manufacturing filter for topology optimization of print-ready designs. Structural and Multidisciplinary Optimization, 55(3), 871–883.MathSciNetCrossRef
61.
go back to reference Allaire, G., et al. (2017). Structural optimization under overhang constraints imposed by additive manufacturing technologies. Journal of Computational Physics, 351, 295–328.MathSciNetMATHCrossRef Allaire, G., et al. (2017). Structural optimization under overhang constraints imposed by additive manufacturing technologies. Journal of Computational Physics, 351, 295–328.MathSciNetMATHCrossRef
62.
go back to reference Xian, Y., & Rosen, D. W. (2020). Morphable components topology optimization for additive manufacturing. Structural and Multidisciplinary Optimization, 62, 19–39. Xian, Y., & Rosen, D. W. (2020). Morphable components topology optimization for additive manufacturing. Structural and Multidisciplinary Optimization, 62, 19–39.
63.
go back to reference Wang, M. Y., & Wang, X. (2004). “Color” level sets: A multi-phase method for structural topology optimization with multiple materials. Computer Methods in Applied Mechanics and Engineering, 193(6–8), 469–496.MathSciNetMATHCrossRef Wang, M. Y., & Wang, X. (2004). “Color” level sets: A multi-phase method for structural topology optimization with multiple materials. Computer Methods in Applied Mechanics and Engineering, 193(6–8), 469–496.MathSciNetMATHCrossRef
64.
go back to reference Giraldo-Londoño, O., et al. (2020). Multi-material thermomechanical topology optimization with applications to additive manufacturing: Design of main composite part and its support structure. Computer Methods in Applied Mechanics and Engineering, 363, 112812.MathSciNetMATHCrossRef Giraldo-Londoño, O., et al. (2020). Multi-material thermomechanical topology optimization with applications to additive manufacturing: Design of main composite part and its support structure. Computer Methods in Applied Mechanics and Engineering, 363, 112812.MathSciNetMATHCrossRef
67.
go back to reference Oh, S., et al. (2019). Deep generative design: Integration of topology optimization and generative models. Journal of Mechanical Design, 141(11): paper 111405. Oh, S., et al. (2019). Deep generative design: Integration of topology optimization and generative models. Journal of Mechanical Design, 141(11): paper 111405.
Metadata
Title
Design for Additive Manufacturing
Authors
Ian Gibson
David Rosen
Brent Stucker
Mahyar Khorasani
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-56127-7_19

Premium Partners