Skip to main content
Top
Published in: Electrical Engineering 4/2019

04-11-2019 | Original Paper

Design of an optimized fractional high-order differential feedback controller for an AVR system

Author: Mustafa Sinasi Ayas

Published in: Electrical Engineering | Issue 4/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper proposes a high-order differential feedback controller (HODFC) and a fractional high-order differential feedback controller (FHODFC) to improve regulating ability of a commonly used automatic voltage regulator (AVR) system. In controller design process, particle swarm optimization (PSO) algorithm is utilized together with analytic approach. A constrained optimization problem is solved by PSO algorithm considering a specified objective function to obtain a less setting time, percentage overshoot, and regulation error. In order to test the performance of the proposed controllers, optimally tuned (proportional–integral–derivative) PID controllers available in the literature are implemented. The results demonstrate that the proposed FHODFC provides less percentage overshoot, settling time, rise time, and peak time than other proposed controllers, i.e., HODFC. Furthermore, the performance of the several available PID controllers is significantly worse than both of the proposed controllers in terms of transient response characteristics.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Agee JT, Bingul Z, Kizir S (2015) Higher-order differential feedback control of a flexible-joint manipulator. J Vib Control 21(10):1976–1986MathSciNetCrossRef Agee JT, Bingul Z, Kizir S (2015) Higher-order differential feedback control of a flexible-joint manipulator. J Vib Control 21(10):1976–1986MathSciNetCrossRef
2.
go back to reference Agee JT, Bingul Z, Kizir S (2017) Trajectory and vibration control of a single-link flexible-joint manipulator using a distributed higher-order differential feedback controller. J Dyn Syst Meas Control 139(8):081006CrossRef Agee JT, Bingul Z, Kizir S (2017) Trajectory and vibration control of a single-link flexible-joint manipulator using a distributed higher-order differential feedback controller. J Dyn Syst Meas Control 139(8):081006CrossRef
3.
go back to reference Al Gizi AJ (2018) A particle swarm optimization, fuzzy PID controller with generator automatic voltage regulator. Soft Comput pp 1–15 Al Gizi AJ (2018) A particle swarm optimization, fuzzy PID controller with generator automatic voltage regulator. Soft Comput pp 1–15
4.
go back to reference Ang KH, Chong G, Li Y (2005) PID control system analysis, design, and technology. IEEE Trans Control Syst Technol 13(4):559–576CrossRef Ang KH, Chong G, Li Y (2005) PID control system analysis, design, and technology. IEEE Trans Control Syst Technol 13(4):559–576CrossRef
5.
go back to reference Anwar MN, Pan S (2014) A frequency domain design of PID controller for an AVR system. J Zhejiang Univ Sci C 15(4):293–299CrossRef Anwar MN, Pan S (2014) A frequency domain design of PID controller for an AVR system. J Zhejiang Univ Sci C 15(4):293–299CrossRef
6.
go back to reference Basu A, Mohanty S, Sharma R (2016) Designing of the PID and FOPID controllers using conventional tuning techniques. In: 2016 International conference on inventive computation technologies (ICICT), vol 2. IEEE, pp 1–6 Basu A, Mohanty S, Sharma R (2016) Designing of the PID and FOPID controllers using conventional tuning techniques. In: 2016 International conference on inventive computation technologies (ICICT), vol 2. IEEE, pp 1–6
7.
go back to reference Bingul Z, Karahan O (2018) A novel performance criterion approach to optimum design of PID controller using cuckoo search algorithm for AVR system. J Frankl Inst 355(13):5534–5559MathSciNetMATHCrossRef Bingul Z, Karahan O (2018) A novel performance criterion approach to optimum design of PID controller using cuckoo search algorithm for AVR system. J Frankl Inst 355(13):5534–5559MathSciNetMATHCrossRef
8.
go back to reference Calderón AJ, Vinagre BM, Feliu V (2006) Fractional order control strategies for power electronic buck converters. Signal Process 86(10):2803–2819MATHCrossRef Calderón AJ, Vinagre BM, Feliu V (2006) Fractional order control strategies for power electronic buck converters. Signal Process 86(10):2803–2819MATHCrossRef
9.
go back to reference Chatterjee A, Mukherjee V, Ghoshal S (2009) Velocity relaxed and craziness-based swarm optimized intelligent PID and PSS controlled AVR system. Int J Electr Power Energy Syst 31(7–8):323–333CrossRef Chatterjee A, Mukherjee V, Ghoshal S (2009) Velocity relaxed and craziness-based swarm optimized intelligent PID and PSS controlled AVR system. Int J Electr Power Energy Syst 31(7–8):323–333CrossRef
10.
go back to reference Chatterjee S, Mukherjee V (2016) PID controller for automatic voltage regulator using teaching–learning based optimization technique. Int J Electr Power Energy Syst 77:418–429CrossRef Chatterjee S, Mukherjee V (2016) PID controller for automatic voltage regulator using teaching–learning based optimization technique. Int J Electr Power Energy Syst 77:418–429CrossRef
11.
go back to reference Du S, van Wyk BJ, Qi G, Tu C (2009) Chaotic system synchronization with an unknown master model using a hybrid HOD active control approach. Chaos Solitons Fractals 42(3):1900–1913MATHCrossRef Du S, van Wyk BJ, Qi G, Tu C (2009) Chaotic system synchronization with an unknown master model using a hybrid HOD active control approach. Chaos Solitons Fractals 42(3):1900–1913MATHCrossRef
12.
go back to reference Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: MHS’95 Proceedings of the sixth international symposium on micro machine and human science. IEEE, pp 39–43 Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: MHS’95 Proceedings of the sixth international symposium on micro machine and human science. IEEE, pp 39–43
13.
go back to reference Ekinci S, Hekimoğlu B (2019) Improved kidney-inspired algorithm approach for tuning of PID controller in AVR system. IEEE Access 7:39935–39947CrossRef Ekinci S, Hekimoğlu B (2019) Improved kidney-inspired algorithm approach for tuning of PID controller in AVR system. IEEE Access 7:39935–39947CrossRef
14.
go back to reference Estakhrouieh MR, Gharaveisi AA (2013) Optimal iterative learning control design for generator voltage regulation system. Turk J Electr Eng Comput Sci 21(Sup. 1):1909–1919CrossRef Estakhrouieh MR, Gharaveisi AA (2013) Optimal iterative learning control design for generator voltage regulation system. Turk J Electr Eng Comput Sci 21(Sup. 1):1909–1919CrossRef
15.
go back to reference Faradja P, Qi G (2015) Robustness based comparison between a sliding mode controller and a model free controller with the approach of synchronization of nonlinear systems. In: 2015 15th international conference on control, automation and systems (ICCAS). IEEE, pp 36–40 Faradja P, Qi G (2015) Robustness based comparison between a sliding mode controller and a model free controller with the approach of synchronization of nonlinear systems. In: 2015 15th international conference on control, automation and systems (ICCAS). IEEE, pp 36–40
16.
go back to reference Gaing ZL (2004) A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE Trans Energy Convers 19(2):384–391CrossRef Gaing ZL (2004) A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE Trans Energy Convers 19(2):384–391CrossRef
17.
go back to reference Gozde H, Taplamacioglu MC (2011) Comparative performance analysis of artificial bee colony algorithm for automatic voltage regulator (AVR) system. J Frankl Inst 348(8):1927–1946MATHCrossRef Gozde H, Taplamacioglu MC (2011) Comparative performance analysis of artificial bee colony algorithm for automatic voltage regulator (AVR) system. J Frankl Inst 348(8):1927–1946MATHCrossRef
18.
go back to reference Gupta T, Sambariya D (2017) Optimal design of fuzzy logic controller for automatic voltage regulator. In: 2017 international conference on information, communication, instrumentation and control (ICICIC). IEEE, pp 1–6 Gupta T, Sambariya D (2017) Optimal design of fuzzy logic controller for automatic voltage regulator. In: 2017 international conference on information, communication, instrumentation and control (ICICIC). IEEE, pp 1–6
19.
go back to reference Kashki M, Abdel-Magid YL, Abido MA (2008) A reinforcement learning automata optimization approach for optimum tuning of PID controller in AVR system. In: International conference on intelligent computing. Springer, pp 684–692 Kashki M, Abdel-Magid YL, Abido MA (2008) A reinforcement learning automata optimization approach for optimum tuning of PID controller in AVR system. In: International conference on intelligent computing. Springer, pp 684–692
20.
go back to reference Kim DH (2011) Hybrid GA-BF based intelligent PID controller tuning for AVR system. Appl Soft Comput 11(1):11–22CrossRef Kim DH (2011) Hybrid GA-BF based intelligent PID controller tuning for AVR system. Appl Soft Comput 11(1):11–22CrossRef
21.
go back to reference Kundur P, Balu NJ, Lauby MG (1994) Power system stability and control, vol 7. McGraw-Hill, New York Kundur P, Balu NJ, Lauby MG (1994) Power system stability and control, vol 7. McGraw-Hill, New York
23.
go back to reference Ntouskas S, Sarimveis H, Sopasakis P (2018) Model predictive control for offset-free reference tracking of fractional order systems. Control Eng Pract 71:26–33CrossRef Ntouskas S, Sarimveis H, Sopasakis P (2018) Model predictive control for offset-free reference tracking of fractional order systems. Control Eng Pract 71:26–33CrossRef
24.
go back to reference Nyabundi S, Qi G, Hamam Y, Munda J (2009) Dc motor control via high order differential feedback control. In: AFRICON, 2009. AFRICON’09. IEEE, pp 1–5 Nyabundi S, Qi G, Hamam Y, Munda J (2009) Dc motor control via high order differential feedback control. In: AFRICON, 2009. AFRICON’09. IEEE, pp 1–5
25.
go back to reference Ortiz-Quisbert ME, Duarte-Mermoud MA, Milla F, Castro-Linares R, Lefranc G (2018) Optimal fractional order adaptive controllers for AVR applications. Electr Eng 100(1):267–283CrossRef Ortiz-Quisbert ME, Duarte-Mermoud MA, Milla F, Castro-Linares R, Lefranc G (2018) Optimal fractional order adaptive controllers for AVR applications. Electr Eng 100(1):267–283CrossRef
26.
go back to reference Oustaloup A, Levron F, Mathieu B, Nanot FM (2000) Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Trans Circuits Syst I Fundam Theory Appl 47(1):25–39CrossRef Oustaloup A, Levron F, Mathieu B, Nanot FM (2000) Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Trans Circuits Syst I Fundam Theory Appl 47(1):25–39CrossRef
27.
go back to reference Oustaloup A, Moreau X, Nouillant M (1996) The crone suspension. Control Eng Pract 4(8):1101–1108CrossRef Oustaloup A, Moreau X, Nouillant M (1996) The crone suspension. Control Eng Pract 4(8):1101–1108CrossRef
28.
go back to reference Qi G, Chen Z, Yuan Z (2005) Model-free control of affine chaotic systems. Phys Lett A 344(2–4):189–202MATHCrossRef Qi G, Chen Z, Yuan Z (2005) Model-free control of affine chaotic systems. Phys Lett A 344(2–4):189–202MATHCrossRef
29.
go back to reference Qi G, Chen Z, Yuan Z (2008) Adaptive high order differential feedback control for affine nonlinear system. Chaos Solitons Fractals 37(1):308–315MathSciNetMATHCrossRef Qi G, Chen Z, Yuan Z (2008) Adaptive high order differential feedback control for affine nonlinear system. Chaos Solitons Fractals 37(1):308–315MathSciNetMATHCrossRef
30.
go back to reference Ribeiro R, Neto C, Costa F, Rocha T, Barreto R (2015) A sliding-mode voltage regulator for salient pole synchronous generator. Electr Power Syst Res 129:178–184CrossRef Ribeiro R, Neto C, Costa F, Rocha T, Barreto R (2015) A sliding-mode voltage regulator for salient pole synchronous generator. Electr Power Syst Res 129:178–184CrossRef
31.
go back to reference Sahib MA (2015) A novel optimal PID plus second order derivative controller for AVR system. Eng Sci Technol Int J 18(2):194–206CrossRef Sahib MA (2015) A novel optimal PID plus second order derivative controller for AVR system. Eng Sci Technol Int J 18(2):194–206CrossRef
32.
go back to reference Sahib MA, Ahmed BS (2016) A new multiobjective performance criterion used in PID tuning optimization algorithms. J Adv Res 7(1):125–134CrossRef Sahib MA, Ahmed BS (2016) A new multiobjective performance criterion used in PID tuning optimization algorithms. J Adv Res 7(1):125–134CrossRef
33.
go back to reference dos Santos Coelho L (2009) Tuning of PID controller for an automatic regulator voltage system using chaotic optimization approach. Chaos Solitons Fractals 39(4):1504–1514CrossRef dos Santos Coelho L (2009) Tuning of PID controller for an automatic regulator voltage system using chaotic optimization approach. Chaos Solitons Fractals 39(4):1504–1514CrossRef
34.
go back to reference Shi X, Dai Y, Liu Z, Qi G (2010) High order differential feedback controller and its application in servo control system of NC machine tools. In: 2010 international conference on system science, engineering design and manufacturing informatization (ICSEM). IEEE, vol 1, pp 241–244 Shi X, Dai Y, Liu Z, Qi G (2010) High order differential feedback controller and its application in servo control system of NC machine tools. In: 2010 international conference on system science, engineering design and manufacturing informatization (ICSEM). IEEE, vol 1, pp 241–244
35.
go back to reference Sun H, Zhang Y, Baleanu D, Chen W, Chen Y (2018) A new collection of real world applications of fractional calculus in science and engineering. Commun Nonlinear Sci Numer Simul 62:409–417MathSciNetCrossRef Sun H, Zhang Y, Baleanu D, Chen W, Chen Y (2018) A new collection of real world applications of fractional calculus in science and engineering. Commun Nonlinear Sci Numer Simul 62:409–417MathSciNetCrossRef
36.
go back to reference Tang Y, Cui M, Hua C, Li L, Yang Y (2012) Optimum design of fractional order pi\(\lambda \)d\(\mu \) controller for AVR system using chaotic ant swarm. Expert Syst Appl 39(8):6887–6896CrossRef Tang Y, Cui M, Hua C, Li L, Yang Y (2012) Optimum design of fractional order pi\(\lambda \)d\(\mu \) controller for AVR system using chaotic ant swarm. Expert Syst Appl 39(8):6887–6896CrossRef
37.
go back to reference Tavazoei MS (2010) Notes on integral performance indices in fractional-order control systems. J Process Control 20(3):285–291CrossRef Tavazoei MS (2010) Notes on integral performance indices in fractional-order control systems. J Process Control 20(3):285–291CrossRef
38.
go back to reference Tavazoei MS (2014) Time response analysis of fractional-order control systems: a survey on recent results. Fract Calc Appl Anal 17(2):440–461MathSciNetMATHCrossRef Tavazoei MS (2014) Time response analysis of fractional-order control systems: a survey on recent results. Fract Calc Appl Anal 17(2):440–461MathSciNetMATHCrossRef
39.
go back to reference Vinagre B, Podlubny I, Hernandez A, Feliu V (2000) Some approximations of fractional order operators used in control theory and applications. Fract Calc Appl Anal 3(3):231–248MathSciNetMATH Vinagre B, Podlubny I, Hernandez A, Feliu V (2000) Some approximations of fractional order operators used in control theory and applications. Fract Calc Appl Anal 3(3):231–248MathSciNetMATH
40.
go back to reference Wei X, Jingjing M, Hongyan J, Fei Y (2010) The main steam temperature cascade control of high order differential of feedback controller. In: 2010 international conference on intelligent system design and engineering application (ISDEA). IEEE, vol 2, pp 683–687 Wei X, Jingjing M, Hongyan J, Fei Y (2010) The main steam temperature cascade control of high order differential of feedback controller. In: 2010 international conference on intelligent system design and engineering application (ISDEA). IEEE, vol 2, pp 683–687
41.
go back to reference Xue W, Xue Y, Qi G, Gao J, Zheng S (2007) Study of high order differential feedback control of DC-link voltage in active power filter. In: 2007 IEEE international conference on automation and logistics. IEEE, pp 1063–1066 Xue W, Xue Y, Qi G, Gao J, Zheng S (2007) Study of high order differential feedback control of DC-link voltage in active power filter. In: 2007 IEEE international conference on automation and logistics. IEEE, pp 1063–1066
42.
go back to reference Yüce A, Deniz FN, Tan N, Atherton DP (2015) Obtaining the time response of control systems with fractional order PID from frequency responses. In: 2015 9th international conference on electrical and electronics engineering (ELECO). IEEE, pp 832–836 Yüce A, Deniz FN, Tan N, Atherton DP (2015) Obtaining the time response of control systems with fractional order PID from frequency responses. In: 2015 9th international conference on electrical and electronics engineering (ELECO). IEEE, pp 832–836
43.
go back to reference Zamani M, Karimi-Ghartemani M, Sadati N, Parniani M (2009) Design of a fractional order PID controller for an AVR using particle swarm optimization. Control Eng Pract 17(12):1380–1387CrossRef Zamani M, Karimi-Ghartemani M, Sadati N, Parniani M (2009) Design of a fractional order PID controller for an AVR using particle swarm optimization. Control Eng Pract 17(12):1380–1387CrossRef
44.
go back to reference Zhu H, Li L, Zhao Y, Guo Y, Yang Y (2009) CAS algorithm-based optimum design of PID controller in AVR system. Chaos Solitons Fractals 42(2):792–800CrossRef Zhu H, Li L, Zhao Y, Guo Y, Yang Y (2009) CAS algorithm-based optimum design of PID controller in AVR system. Chaos Solitons Fractals 42(2):792–800CrossRef
Metadata
Title
Design of an optimized fractional high-order differential feedback controller for an AVR system
Author
Mustafa Sinasi Ayas
Publication date
04-11-2019
Publisher
Springer Berlin Heidelberg
Published in
Electrical Engineering / Issue 4/2019
Print ISSN: 0948-7921
Electronic ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-019-00842-5

Other articles of this Issue 4/2019

Electrical Engineering 4/2019 Go to the issue