Skip to main content
Top
Published in: Wireless Personal Communications 2/2022

21-01-2022

Design of Bio-implantable Antenna Using Metamaterial Substrate

Authors: Kasturi Sudam Patil, Dr. Elizabeth Rufus

Published in: Wireless Personal Communications | Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A compact microstrip patch antenna is proposed with metamaterial-based split-ring resonators (SRR) for biotelemetry application. This antenna works on industrial, scientific, and medical (ISM) band (2.4–2.45 GHz and 5.7–5.875 GHz). The proposed antenna was designed, fabricated, and tested using FR4 substrate, and a polyamide superstrate layer is used which has dielectric constant 4.3 and 3.5 respectively. The dimension of an antenna is 10 × 10 × 1.1mm3. The frequency range covered by an antenna is 2.45 GHz and 5.8 GHz with bandwidth 450 MHz and 350 MHz respectively. Antennas resonating frequency is 2.45 GHz and 5.75 GHz at which its return loss is − 31 dB and − 18.5 dB respectively inside the skin. For validation of results, antenna performance is tested inside vitro solution of skin mimicking liquid. This compact size miniaturized implantable antenna is suitable for biomedical applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Liu, R., Zhang, K., Li, Z., Cui, W., Liang, W., & Wang, M. (2021). A wideband circular polarization implantable antenna for health monitor microsystem. IEEE Antennas and Wireless Propagation Letters, 20(5), 848–853.CrossRef Liu, R., Zhang, K., Li, Z., Cui, W., Liang, W., & Wang, M. (2021). A wideband circular polarization implantable antenna for health monitor microsystem. IEEE Antennas and Wireless Propagation Letters, 20(5), 848–853.CrossRef
2.
go back to reference Issa And, M., & Essaaidi, M. (2016). A novel compact multiband broadside-coupled split-ring resonator metamaterial structure loaded fractal slot antenna for 4g communications and wireless systems. Microwave and Optical Technology Letters, 58(12), 2823–2828.CrossRef Issa And, M., & Essaaidi, M. (2016). A novel compact multiband broadside-coupled split-ring resonator metamaterial structure loaded fractal slot antenna for 4g communications and wireless systems. Microwave and Optical Technology Letters, 58(12), 2823–2828.CrossRef
3.
go back to reference Singh, H., Sohi, B., & Gupta, A. (2019). Designing and analysis of cross-shaped CRLH metamaterial for wideband negative-index characteristics. Material Research Express, 6, 075801–075820.CrossRef Singh, H., Sohi, B., & Gupta, A. (2019). Designing and analysis of cross-shaped CRLH metamaterial for wideband negative-index characteristics. Material Research Express, 6, 075801–075820.CrossRef
4.
go back to reference Mosallaei, H., & Sarabandi, K. (2007). Design and modeling of patch antenna printed on magneto-dielectric embedded-circuit metasubstrate. IEEE Transactions on Antennas and Propagation, 55(1), 1–6.CrossRef Mosallaei, H., & Sarabandi, K. (2007). Design and modeling of patch antenna printed on magneto-dielectric embedded-circuit metasubstrate. IEEE Transactions on Antennas and Propagation, 55(1), 1–6.CrossRef
5.
go back to reference Benosman, H., & Boukli-Hacene, N. (2012). “Design and simulation of double S-shaped metamaterial. International Journal of Computer Science Issues (IJCSI), 9, 0814–1694. Benosman, H., & Boukli-Hacene, N. (2012). “Design and simulation of double S-shaped metamaterial. International Journal of Computer Science Issues (IJCSI), 9, 0814–1694.
6.
go back to reference Rashed, M., Faruque, I., & Jakir, M. (2017). Design and analysis of a new double C-shaped miniaturized metamaterial for multiband applications. Applied Physics A, 123(5), 1–8. Rashed, M., Faruque, I., & Jakir, M. (2017). Design and analysis of a new double C-shaped miniaturized metamaterial for multiband applications. Applied Physics A, 123(5), 1–8.
7.
go back to reference Dhouibi, A., Burokur, S. N., Lustrac, A., & Priou, A. (2012). Study and analysis of an electric Z-shaped meta-atom. Advanced Electromagnetics, 1, 64–70.CrossRef Dhouibi, A., Burokur, S. N., Lustrac, A., & Priou, A. (2012). Study and analysis of an electric Z-shaped meta-atom. Advanced Electromagnetics, 1, 64–70.CrossRef
8.
go back to reference Ahmad, B., Mohammad, S., & Sharawi, S. (2013). Extraction of material parameters for metamaterials using a full-wave simulator. IEEE Antennas and Propagation Magazine, 55(5), 202–212.CrossRef Ahmad, B., Mohammad, S., & Sharawi, S. (2013). Extraction of material parameters for metamaterials using a full-wave simulator. IEEE Antennas and Propagation Magazine, 55(5), 202–212.CrossRef
9.
go back to reference Saha, C., Siddiqui, J., & Antar, Y. (2011). Square split ring resonator backed coplanar waveguide for filter applications. In: 2011XXXth URSI general assembly and scientific symposium, pp. 1–4 Saha, C., Siddiqui, J., & Antar, Y. (2011). Square split ring resonator backed coplanar waveguide for filter applications. In: 2011XXXth URSI general assembly and scientific symposium, pp. 1–4
10.
go back to reference Bahl, I., & Bhartia, P. (1998). Microwave solid state circuit design. John Wiley & Sons. Bahl, I., & Bhartia, P. (1998). Microwave solid state circuit design. John Wiley & Sons.
11.
go back to reference Terman, F. E. (1943). Radio engineers handbook. Mcgraw-Hill. Terman, F. E. (1943). Radio engineers handbook. Mcgraw-Hill.
12.
go back to reference Jiang, Z., Wang, Z., Leach, M., Lim, E., Wang, J., & Huang, Y. (2019). Wideband loop antenna with split ring resonators for wireless medical telemetry. IEEE Antennas and Wireless Propagation Letters, 18(7), 1415–1419.CrossRef Jiang, Z., Wang, Z., Leach, M., Lim, E., Wang, J., & Huang, Y. (2019). Wideband loop antenna with split ring resonators for wireless medical telemetry. IEEE Antennas and Wireless Propagation Letters, 18(7), 1415–1419.CrossRef
13.
go back to reference Hasan, M., Rahman, M., Faruque, M., & Islam, M.-T. (2019). Bandwidth enhanced metamaterial embedded inverse L-slotted antenna for WiFi/WLAN/WiMAX wireless communication. Material Research Express, 6, 085805–085815.CrossRef Hasan, M., Rahman, M., Faruque, M., & Islam, M.-T. (2019). Bandwidth enhanced metamaterial embedded inverse L-slotted antenna for WiFi/WLAN/WiMAX wireless communication. Material Research Express, 6, 085805–085815.CrossRef
14.
go back to reference Singh, G., & Kaur, J. (2020). “Skin and brain implantable inset-fed antenna at ISM band for wireless biotelemetry applications. Microw Opt Technology Lett, 1, 1–6. Singh, G., & Kaur, J. (2020). “Skin and brain implantable inset-fed antenna at ISM band for wireless biotelemetry applications. Microw Opt Technology Lett, 1, 1–6.
15.
go back to reference Kasem, F., Al-Husseini, M., Ramadan, A., Haskou, A., Kabalank, Y., & El-Hajja, A. (2012). A compact quad-band metamaterial-based antenna for wireless applications. In: 2nd International conference on advances in computational tools for engineering applications (ACTEA) (Lebanon: Beirut), Vol. 1, pp. 120–123. Kasem, F., Al-Husseini, M., Ramadan, A., Haskou, A., Kabalank, Y., & El-Hajja, A. (2012). A compact quad-band metamaterial-based antenna for wireless applications. In: 2nd International conference on advances in computational tools for engineering applications (ACTEA) (Lebanon: Beirut), Vol. 1, pp. 120–123.
16.
go back to reference Li, K., Zhu, C., Li, L., & Liang, C. (2013). Design of electrically small metamaterial antenna with ELC and EBG loading. IEEE Antenna Wireless Propagation Letter, 12, 678–681.CrossRef Li, K., Zhu, C., Li, L., & Liang, C. (2013). Design of electrically small metamaterial antenna with ELC and EBG loading. IEEE Antenna Wireless Propagation Letter, 12, 678–681.CrossRef
17.
go back to reference Abed, A. T., & Singh, M. S. (2016). “Slot antenna single layer fed by step impedance strip line for Wi-Fi and Wi-Max applications. Electronics Letter, 52, 1196–1204.CrossRef Abed, A. T., & Singh, M. S. (2016). “Slot antenna single layer fed by step impedance strip line for Wi-Fi and Wi-Max applications. Electronics Letter, 52, 1196–1204.CrossRef
18.
go back to reference Nandi, S., & Mohan, A. (2017). CRLH unit cell loaded tri-band compact MIMO antenna for WLAN/WiMAX applications. IEEE Antenna, Wireless Propagation Letter, 16, 1816–1825. Nandi, S., & Mohan, A. (2017). CRLH unit cell loaded tri-band compact MIMO antenna for WLAN/WiMAX applications. IEEE Antenna, Wireless Propagation Letter, 16, 1816–1825.
19.
go back to reference Bilotti, F., Toscano, A., & Vegni, L. (2007). Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples. IEEE Transactions on Antennas and Propagation, 55(8), 2258–2267.CrossRef Bilotti, F., Toscano, A., & Vegni, L. (2007). Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples. IEEE Transactions on Antennas and Propagation, 55(8), 2258–2267.CrossRef
20.
go back to reference Patel, S., & Kosta, Y. (2014). Square-tooth split ring resonator: A novel metamaterial for bandwidth and radiation improvement in microstrip-based radiating structure design. Journal of Modern Optics, 3, 1–11. Patel, S., & Kosta, Y. (2014). Square-tooth split ring resonator: A novel metamaterial for bandwidth and radiation improvement in microstrip-based radiating structure design. Journal of Modern Optics, 3, 1–11.
21.
go back to reference Yang, Z.-J., & Zhu, L. (2020). An implantable wideband microstrip patch antenna based on high-loss property of human tissue. IEEE Access, 8, 93048–93058.CrossRef Yang, Z.-J., & Zhu, L. (2020). An implantable wideband microstrip patch antenna based on high-loss property of human tissue. IEEE Access, 8, 93048–93058.CrossRef
22.
go back to reference Santoshkumar-Singh, M., Ghosh, J., Ghosh, S., & Sarkhe, A. (2021). Miniaturized dual-antenna system for implantable biotelemetry application. IEEE Antennas and Wireless Propagation Letters 20(8) Santoshkumar-Singh, M., Ghosh, J., Ghosh, S., & Sarkhe, A. (2021). Miniaturized dual-antenna system for implantable biotelemetry application. IEEE Antennas and Wireless Propagation Letters 20(8)
23.
go back to reference Hayat, S., Shah, S. A. A., & Yoo, H. (2021). Miniaturized dual-band circularly polarized implantable antenna for capsule endoscopic system. IEEE Transactions on Antennas and Propagation, 69(4). Hayat, S., Shah, S. A. A., & Yoo, H. (2021). Miniaturized dual-band circularly polarized implantable antenna for capsule endoscopic system. IEEE Transactions on Antennas and Propagation, 69(4).
24.
go back to reference Abdi, A., Ghorbani, F., & Aliakbarian, H. (2020). Electrically small spiral PIFA for deep implantable devices. IEEE Access, 8, 158459–158474.CrossRef Abdi, A., Ghorbani, F., & Aliakbarian, H. (2020). Electrically small spiral PIFA for deep implantable devices. IEEE Access, 8, 158459–158474.CrossRef
25.
go back to reference Berkelmann, L., & Manteuffel, D. (2021). Antenna parameters for on-body communications with wearable and implantable antennas. IEEE Transactions on Antennas and Propagation, 69(9), 34–41.CrossRef Berkelmann, L., & Manteuffel, D. (2021). Antenna parameters for on-body communications with wearable and implantable antennas. IEEE Transactions on Antennas and Propagation, 69(9), 34–41.CrossRef
26.
go back to reference Bilotti, F., Toscano, A., & Vegni, L. (2007). Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples. IEEE Transactions on Antennas and Propagation, 55(8), 56–64.CrossRef Bilotti, F., Toscano, A., & Vegni, L. (2007). Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples. IEEE Transactions on Antennas and Propagation, 55(8), 56–64.CrossRef
27.
go back to reference Patel, S., & Kosta, Y. (2014). Square-tooth split ring resonator: A novel metamaterial for bandwidth and radiation improvement in microstrip-based radiating structure design. Journal of Modern Optics, 1, 1–11. Patel, S., & Kosta, Y. (2014). Square-tooth split ring resonator: A novel metamaterial for bandwidth and radiation improvement in microstrip-based radiating structure design. Journal of Modern Optics, 1, 1–11.
Metadata
Title
Design of Bio-implantable Antenna Using Metamaterial Substrate
Authors
Kasturi Sudam Patil
Dr. Elizabeth Rufus
Publication date
21-01-2022
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 2/2022
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-09414-y

Other articles of this Issue 2/2022

Wireless Personal Communications 2/2022 Go to the issue