Skip to main content
Top
Published in: Wireless Personal Communications 4/2019

20-08-2019

Design of Defected Ground Structure Band Stop/Band Pass Filters Using Dielectric Resonator

Authors: Noha A. Al-Shalaby, Shaymaa M. Gaber

Published in: Wireless Personal Communications | Issue 4/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A square dielectric resonator element (SDR) with a defected ground structure (DGS) is investigated. The proposed DGS is composed of two rectangular slots connected by two transverse slots and is placed in the ground plane. It is fed by a strip line through the substrate layer. The objective of this structure is to design dielectric resonator band- stop filter (DRF) and enhance the performance in terms of better insertion loss and increased bandwidth. The DRF has been fabricated and measurements are taken. The results for band- stop filter show a cut-off frequency of 2.25 GHz, transmission loss of 2 dB and the 3-dB bandwidth ranges from 1.4 to 2.64 GHz. The effect of the transverse slot width on the filter response curve is studied. The same structure is modulated to be frequency reconfigurable DRF for achieving frequency agility by using ideal metallic switches. The cut-off frequency is shifted by 1 GHz, the 3-dB bandwidth by 1.5 GHz, while the transmission loss is decreased by 0.75 dB. Finally, the effect of loading SDR with metal plate is investigated. This structure combines the dielectric resonator antenna and the DRF to propose dielectric resonator antenna filter (DRAF), this structure is used to miniaturize the global-positioning-system receivers that contain both the antenna and filter. The DRAF has been fabricated and measured, it has 3-dB pass bandwidth of about 1 GHz. Factors such as return loss, insertion loss, radiation pattern and mutual coupling of DRAF are calculated using Finite element method. Comparison of calculated and measured factors of DRAF shows a good agreement.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Chen, X., Zhao, F., Yan, L., & Zhang, W. (2013). A compact filtering antenna with flat gain response within the passband. IEEE Antennas and Wireless Propagation Letters,12, 857–860.CrossRef Chen, X., Zhao, F., Yan, L., & Zhang, W. (2013). A compact filtering antenna with flat gain response within the passband. IEEE Antennas and Wireless Propagation Letters,12, 857–860.CrossRef
2.
go back to reference Wang, Z. P., Hall, P. S., & Gardner, P. (2012). Yagi antenna with frequency domain filtering performance. In Antennas and propagation society international symposium (APSURSI). IEEE. Wang, Z. P., Hall, P. S., & Gardner, P. (2012). Yagi antenna with frequency domain filtering performance. In Antennas and propagation society international symposium (APSURSI). IEEE.
3.
go back to reference Chuang, C.-T., & Chung, S.-J. (2009). New printed filtering antenna with selectivity enhancement. In European microwave conference, EuMC 2009. IEEE. Chuang, C.-T., & Chung, S.-J. (2009). New printed filtering antenna with selectivity enhancement. In European microwave conference, EuMC 2009. IEEE.
4.
go back to reference Oda, S., et al. (2007). Electrically small superconducting antennas with bandpass filters. IEEE Transactions on Applied Superconductivity,17(2), 878–881.CrossRef Oda, S., et al. (2007). Electrically small superconducting antennas with bandpass filters. IEEE Transactions on Applied Superconductivity,17(2), 878–881.CrossRef
5.
go back to reference Queudet, F., et al. (2002). Integration of pass-band filters in patch antennas. In 32nd European microwave conference. IEEE. Queudet, F., et al. (2002). Integration of pass-band filters in patch antennas. In 32nd European microwave conference. IEEE.
6.
go back to reference Abunjaileh, A. I., Hunter, I. C., & Kemp, A. H. (2008). A circuit-theoretic approach to the design of quadruple-mode broadband microstrip patch antennas. IEEE Transactions on Microwave Theory and Techniques,56(4), 896–900.CrossRef Abunjaileh, A. I., Hunter, I. C., & Kemp, A. H. (2008). A circuit-theoretic approach to the design of quadruple-mode broadband microstrip patch antennas. IEEE Transactions on Microwave Theory and Techniques,56(4), 896–900.CrossRef
7.
go back to reference Lin, C.-K., & Chung, S.-J. (2011). A filtering microstrip antenna array. IEEE Transactions on Microwave Theory and Techniques,59(11), 2856–2863.CrossRef Lin, C.-K., & Chung, S.-J. (2011). A filtering microstrip antenna array. IEEE Transactions on Microwave Theory and Techniques,59(11), 2856–2863.CrossRef
8.
go back to reference Wu, W.-J., et al. (2011). A new compact filter-antenna for modern wireless communication systems. IEEE Antennas and Wireless Propagation Letters,10, 1131–1134.CrossRef Wu, W.-J., et al. (2011). A new compact filter-antenna for modern wireless communication systems. IEEE Antennas and Wireless Propagation Letters,10, 1131–1134.CrossRef
9.
go back to reference Lim, E. H., & Leung, K. W. (2008). Use of the dielectric resonator antenna as a filter element. IEEE Transactions on Antennas and Propagation,56(1), 5–10.CrossRef Lim, E. H., & Leung, K. W. (2008). Use of the dielectric resonator antenna as a filter element. IEEE Transactions on Antennas and Propagation,56(1), 5–10.CrossRef
10.
go back to reference Breed, G. (2008). An introduction to defected ground structures in microstrip circuits. High Frequency Electronics, 7, 50–54. Breed, G. (2008). An introduction to defected ground structures in microstrip circuits. High Frequency Electronics, 7, 50–54.
11.
go back to reference Annam, K. (2015). Design of bandstop filters using defected ground structures. Diss: University of Dayton. Annam, K. (2015). Design of bandstop filters using defected ground structures. Diss: University of Dayton.
12.
go back to reference Ahn, D., et al. (2001). A design of the low-pass filter using the novel microstrip defected ground structure. IEEE Transactions on Microwave Theory and Techniques,49(1), 86–93.CrossRef Ahn, D., et al. (2001). A design of the low-pass filter using the novel microstrip defected ground structure. IEEE Transactions on Microwave Theory and Techniques,49(1), 86–93.CrossRef
13.
go back to reference Abdel-Rahman, A. B., et al. (2004). Control of bandstop response of Hi-Lo microstrip low-pass filter using slot in ground plane. IEEE Transactions on Microwave Theory and Techniques,52(3), 1008–1013.CrossRef Abdel-Rahman, A. B., et al. (2004). Control of bandstop response of Hi-Lo microstrip low-pass filter using slot in ground plane. IEEE Transactions on Microwave Theory and Techniques,52(3), 1008–1013.CrossRef
14.
go back to reference Mandal, M. K., & Sanyal, S. (2006). A novel defected ground structure for planar circuits. IEEE Microwave and Wireless Components Letters,16(2), 93–95.CrossRef Mandal, M. K., & Sanyal, S. (2006). A novel defected ground structure for planar circuits. IEEE Microwave and Wireless Components Letters,16(2), 93–95.CrossRef
15.
go back to reference Lim, J.-S., et al. (2002). A spiral-shaped defected ground structure for coplanar waveguide. IEEE Microwave and Wireless Components Letters,12(9), 330–332.MathSciNetCrossRef Lim, J.-S., et al. (2002). A spiral-shaped defected ground structure for coplanar waveguide. IEEE Microwave and Wireless Components Letters,12(9), 330–332.MathSciNetCrossRef
16.
go back to reference Woo, D.-J., et al. (2006). Novel U-slot and V-slot DGSs for bandstop filter with improved Q factor. IEEE Transactions on Microwave Theory and Techniques,54(6), 2840–2847.CrossRef Woo, D.-J., et al. (2006). Novel U-slot and V-slot DGSs for bandstop filter with improved Q factor. IEEE Transactions on Microwave Theory and Techniques,54(6), 2840–2847.CrossRef
17.
go back to reference Petosa, A. (2007). Dielectric resonator antenna handbook. Norwood: Artech House Inc. Petosa, A. (2007). Dielectric resonator antenna handbook. Norwood: Artech House Inc.
18.
go back to reference Leung, K. W., et al. (1997). Bandwidth enhancement of dielectric resonator antenna by loading a low-profile dielectric disk of very high permittivity. Electronics Letters,33(9), 725–726.CrossRef Leung, K. W., et al. (1997). Bandwidth enhancement of dielectric resonator antenna by loading a low-profile dielectric disk of very high permittivity. Electronics Letters,33(9), 725–726.CrossRef
19.
go back to reference Kishk, A. A., & Lee, K. F. (2005). Wideband simple cylindrical dielectric resonator antennas. IEEE Microwave and Wireless Components Letters,15(4), 241–243.CrossRef Kishk, A. A., & Lee, K. F. (2005). Wideband simple cylindrical dielectric resonator antennas. IEEE Microwave and Wireless Components Letters,15(4), 241–243.CrossRef
20.
go back to reference Hwang, Y., et al. (1997). Gain-enhanced miniaturised rectangular dielectric resonator antenna. Electronics Letters,33(5), 350–352.CrossRef Hwang, Y., et al. (1997). Gain-enhanced miniaturised rectangular dielectric resonator antenna. Electronics Letters,33(5), 350–352.CrossRef
21.
go back to reference Esselle, K. P. (1996). A low-profile rectangular dielectric-resonator antenna. IEEE Transactions on Antennas and Propagation,44(9), 1296–1297.CrossRef Esselle, K. P. (1996). A low-profile rectangular dielectric-resonator antenna. IEEE Transactions on Antennas and Propagation,44(9), 1296–1297.CrossRef
22.
go back to reference Mahmood, R., & Beg, M. T. (2014). Dual band dielectric resonator filter (DBDRF) with defected ground structure (DGS). World Applied Sciences Journal,32(4), 582–586. Mahmood, R., & Beg, M. T. (2014). Dual band dielectric resonator filter (DBDRF) with defected ground structure (DGS). World Applied Sciences Journal,32(4), 582–586.
23.
go back to reference Makwana, G. D., & Vinoy, K. J. (2009). Design of a compact rectangular dielectric resonator antenna at 2.4 GHz. Progress in Electromagnetics Research C,11, 69–79.CrossRef Makwana, G. D., & Vinoy, K. J. (2009). Design of a compact rectangular dielectric resonator antenna at 2.4 GHz. Progress in Electromagnetics Research C,11, 69–79.CrossRef
24.
go back to reference Rezaei, P., Hakkak, M., & Forooraghi, K. (2006). Design of wide-band dielectric resonator antenna with a two-segment structure. Progress in Electromagnetics Research, PIER,66, 111–124.CrossRef Rezaei, P., Hakkak, M., & Forooraghi, K. (2006). Design of wide-band dielectric resonator antenna with a two-segment structure. Progress in Electromagnetics Research, PIER,66, 111–124.CrossRef
Metadata
Title
Design of Defected Ground Structure Band Stop/Band Pass Filters Using Dielectric Resonator
Authors
Noha A. Al-Shalaby
Shaymaa M. Gaber
Publication date
20-08-2019
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 4/2019
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-019-06690-7

Other articles of this Issue 4/2019

Wireless Personal Communications 4/2019 Go to the issue