Skip to main content
Top
Published in: Wireless Personal Communications 4/2022

26-06-2022

Design of Energy Efficient Multiplier with Approximate Computing on Scalable Compressor for Error-Resilient Image Contrast Enhancement

Authors: M. Maria Dominic Savio, T. Deepa

Published in: Wireless Personal Communications | Issue 4/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A number of arithmetic operations and applications use digital logic circuits as their primary building blocks, to operate with high reliability and precision. The multiplier is the core part of most arithmetic designs. The trend of imprecise multiplier has gained visibility in recent years, especially for image processing applications. Most of the multiplier designs use a compressor in the dot product reduction. In recent years, researchers have focused on designing imprecise, or approximate compressor to reduce design complexity while maintaining a low error rate. For higher bit multiplication, the design of a higher-order compressor is required. Using Karnaugh map (K-map) and truth table for approximation is a challenging task for the higher-order compressor. To address this issue, a scalable compressor with reasonable approximation using counter-based comparison methods is designed in this paper. The simulation results used with scalable compressors are compared with the existing 8 × 8 and 16 × 16 multipliers. These approximate circuits show significant improvement in the efficiency of multimedia signal processing, leading to better efficiency in terms of 30% area, 25% power, 20% delay, mean error distance (MED), error distance (ED), and normalized error distance (NED). The proposed method is applied in image multiplications for image contrast enhancement application. The peak signal-to-noise ratio (PSNR) is then determined and compared to other existing work.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kuo, S. M., Lee, B. H., & Tian, W. (2013). Real-time digital signal processing: Fundamentals, implementations and applications. Wiley. Kuo, S. M., Lee, B. H., & Tian, W. (2013). Real-time digital signal processing: Fundamentals, implementations and applications. Wiley.
2.
go back to reference Dandapat, A., Ghosal, S., Sarkar, P., & Mukhopadhyay, D. (2010). A 1.2-ns 16 × 16-bit binary multiplier using high speed compressors. International Journal of Electrical and Electronics Engineering, 4(3), 234–239. Dandapat, A., Ghosal, S., Sarkar, P., & Mukhopadhyay, D. (2010). A 1.2-ns 16 × 16-bit binary multiplier using high speed compressors. International Journal of Electrical and Electronics Engineering, 4(3), 234–239.
3.
go back to reference Parhi, K. K. (1999). VLSI digital signal processing systems: Design and implementation (1st ed.). Wiley. Parhi, K. K. (1999). VLSI digital signal processing systems: Design and implementation (1st ed.). Wiley.
4.
go back to reference Parhami, B. (2010). Computer arithmetic. Oxford University Press. Parhami, B. (2010). Computer arithmetic. Oxford University Press.
5.
go back to reference Mittal, S. (2016). A survey of techniques for approximate computing. ACM Computing Surveys (CSUR), 48(4), 1–33. Mittal, S. (2016). A survey of techniques for approximate computing. ACM Computing Surveys (CSUR), 48(4), 1–33.
6.
go back to reference Gorantla, A., & Deepa, P. (2019). Design of approximate subtractors and dividers for error tolerant image processing applications. Journal of Electronic Testing, 35, 1–7.CrossRef Gorantla, A., & Deepa, P. (2019). Design of approximate subtractors and dividers for error tolerant image processing applications. Journal of Electronic Testing, 35, 1–7.CrossRef
7.
go back to reference Kim, Y., Zhang, Y., & Li, P. (2014). Energy efficient approximate arithmetic for error resilient neuromorphic computing. IEEE Transactions on Very Large Scale Integration VLSI Systems, 23(11), 2733–2737.CrossRef Kim, Y., Zhang, Y., & Li, P. (2014). Energy efficient approximate arithmetic for error resilient neuromorphic computing. IEEE Transactions on Very Large Scale Integration VLSI Systems, 23(11), 2733–2737.CrossRef
8.
go back to reference Zhou, Y., Lin, J., Wang, J., & Wang, Z. (2018, October). Approximate comparator: Design and analysis. In: 2018 IEEE International Workshop on Signal Processing Systems (SiPS) (pp. 1–5). IEEE. Zhou, Y., Lin, J., Wang, J., & Wang, Z. (2018, October). Approximate comparator: Design and analysis. In: 2018 IEEE International Workshop on Signal Processing Systems (SiPS) (pp. 1–5). IEEE.
9.
go back to reference Monajati, M., Fakhraie, S. M., & Kabir, E. (2015). Approximate arithmetic for low-power image median filtering. Circuits, Systems, and SignalProcessing, 34(10), 3191–3219.CrossRef Monajati, M., Fakhraie, S. M., & Kabir, E. (2015). Approximate arithmetic for low-power image median filtering. Circuits, Systems, and SignalProcessing, 34(10), 3191–3219.CrossRef
10.
go back to reference Pishvaie, A., Jaberipur, G., & Jahanian, A. (2012). Improved CMOS (4; 2)compressor designs for parallel multipliers. Computers & Electrical Engineering, 38(6), 1703–1716.CrossRef Pishvaie, A., Jaberipur, G., & Jahanian, A. (2012). Improved CMOS (4; 2)compressor designs for parallel multipliers. Computers & Electrical Engineering, 38(6), 1703–1716.CrossRef
11.
go back to reference Chang, C. H., Gu, J., & Zhang, M. (2004). Ultra low-voltage low-power CMOS 4–2 and 5–2 compressorsfor fast arithmetic circuits. IEEE Transactions on Circuits and Systems I: Regular Papers, 51(10), 1985–1997.CrossRef Chang, C. H., Gu, J., & Zhang, M. (2004). Ultra low-voltage low-power CMOS 4–2 and 5–2 compressorsfor fast arithmetic circuits. IEEE Transactions on Circuits and Systems I: Regular Papers, 51(10), 1985–1997.CrossRef
12.
go back to reference Gorantla, A. (2017). Design of approximate compressors for multiplication. ACM Journal on EmergingTechnologies in Computing Systems (JETC), 13(3), 1–17.CrossRef Gorantla, A. (2017). Design of approximate compressors for multiplication. ACM Journal on EmergingTechnologies in Computing Systems (JETC), 13(3), 1–17.CrossRef
13.
go back to reference Moaiyeri, M. H., Sabetzadeh, F., & Angizi, S. (2018). An efficient majority-based compressor for approximate computing in the nano era. Microsystem Technologies, 24(3), 1589–1601.CrossRef Moaiyeri, M. H., Sabetzadeh, F., & Angizi, S. (2018). An efficient majority-based compressor for approximate computing in the nano era. Microsystem Technologies, 24(3), 1589–1601.CrossRef
14.
go back to reference Taheri, M., Arasteh, A., Mohammadyan, S., Panahi, A., & Navi, K. (2020). A novel majority based imprecise 4:2 compressor with respect to the current and future VLSI industry. Microprocessors and Microsystems, 73, 102962.CrossRef Taheri, M., Arasteh, A., Mohammadyan, S., Panahi, A., & Navi, K. (2020). A novel majority based imprecise 4:2 compressor with respect to the current and future VLSI industry. Microprocessors and Microsystems, 73, 102962.CrossRef
16.
go back to reference Townsend, W. J., Swartzlander Jr, E. E., & Abraham, J.A. (2003, December). A comparison of Dadda and Wallace multiplier delays. In: Advanced signal processing algorithms, architectures, and implementations XIII (Vol. 5205, pp. 552–560). International Society for Optics and Photonics. Townsend, W. J., Swartzlander Jr, E. E., & Abraham, J.A. (2003, December). A comparison of Dadda and Wallace multiplier delays. In: Advanced signal processing algorithms, architectures, and implementations XIII (Vol. 5205, pp. 552–560). International Society for Optics and Photonics.
17.
go back to reference Jaiswal, K. B., Kumar, N., Seshadri, P. & Lakshminarayanan, G. (2015, March). Low power wallace tree multiplier using modified full adder. In 2015 3rd international conference on signal processing, communication and networking (ICSCN) (pp. 1–4). IEEE. Jaiswal, K. B., Kumar, N., Seshadri, P. & Lakshminarayanan, G. (2015, March). Low power wallace tree multiplier using modified full adder. In 2015 3rd international conference on signal processing, communication and networking (ICSCN) (pp. 1–4). IEEE.
18.
go back to reference Marimuthu, R., Rezinold, Y. E., & Mallick, P. S. (2016). Design and analysis of multiplier using approximate 15–4 compressor. IEEE Access, 5, 1027–1036.CrossRef Marimuthu, R., Rezinold, Y. E., & Mallick, P. S. (2016). Design and analysis of multiplier using approximate 15–4 compressor. IEEE Access, 5, 1027–1036.CrossRef
19.
go back to reference Bala, S. T., Shangavi, D. & Sangeetha, P. (2018, December). Area and Power Efficient Approximate Wallace Tree Multiplier using 4: 2 Compressors. In 2018 International Conference on Intelligent Computing and Communication for Smart World (I2C2SW) (pp. 287–290). IEEE. Bala, S. T., Shangavi, D. & Sangeetha, P. (2018, December). Area and Power Efficient Approximate Wallace Tree Multiplier using 4: 2 Compressors. In 2018 International Conference on Intelligent Computing and Communication for Smart World (I2C2SW) (pp. 287–290). IEEE.
20.
21.
go back to reference Shah, T., & Jamal, S. S. (2020). An improved chaotic cryptosystem for image encryption and digital watermarking. Wireless Personal Communications, 110(3), 1429–1442.CrossRef Shah, T., & Jamal, S. S. (2020). An improved chaotic cryptosystem for image encryption and digital watermarking. Wireless Personal Communications, 110(3), 1429–1442.CrossRef
22.
23.
go back to reference Sun, C., Talbot, H., Ourselin, S. & Adriaansen, T. eds. (2003). Digital image computing: techniques and applications. Proceedings of the VIIth Biennial Australian Pattern Recognition Society Conference, DICTA 2003. CSIRO PUBLISHING. Sun, C., Talbot, H., Ourselin, S. & Adriaansen, T. eds. (2003). Digital image computing: techniques and applications. Proceedings of the VIIth Biennial Australian Pattern Recognition Society Conference, DICTA 2003. CSIRO PUBLISHING.
24.
go back to reference Abraham, A., Jiang, X. H., Snášel, V. & Pan, J. S. eds., (2015). Intelligent data analysis and applications. Proceedings of the Second Euro-China Conference on Intelligent Data Analysis and Applications, ECC 2015 (Vol. 370). Springer. Abraham, A., Jiang, X. H., Snášel, V. & Pan, J. S. eds., (2015). Intelligent data analysis and applications. Proceedings of the Second Euro-China Conference on Intelligent Data Analysis and Applications, ECC 2015 (Vol. 370). Springer.
25.
go back to reference Maragos, P., Schafer, R. W., & Butt, M. A. (Eds.). (2012). Mathematical morphology and its applications to image and signal processing. Springer. Maragos, P., Schafer, R. W., & Butt, M. A. (Eds.). (2012). Mathematical morphology and its applications to image and signal processing. Springer.
26.
go back to reference Seppänen, T. (Ed.). (2008). Digital audio watermarking techniques and technologies: applications and benchmarks. Information Science Reference. Seppänen, T. (Ed.). (2008). Digital audio watermarking techniques and technologies: applications and benchmarks. Information Science Reference.
27.
go back to reference Guo, Y., Sun, H., Guo, L. & Kimura, S. (2018, October). Low-cost approximate multiplier design using probability-driven inexact compressors. In 2018 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS) (pp. 291–294). IEEE. Guo, Y., Sun, H., Guo, L. & Kimura, S. (2018, October). Low-cost approximate multiplier design using probability-driven inexact compressors. In 2018 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS) (pp. 291–294). IEEE.
28.
go back to reference Tung, C.W. & Huang, S. H. (2019, April). Low-power high-accuracy approximate multiplier using approximate high-order compressors. In 2019 2nd International Conference on Communication Engineering and Technology (ICCET) (pp. 163–167). IEEE. Tung, C.W. & Huang, S. H. (2019, April). Low-power high-accuracy approximate multiplier using approximate high-order compressors. In 2019 2nd International Conference on Communication Engineering and Technology (ICCET) (pp. 163–167). IEEE.
29.
go back to reference Marimuthu, R., Bansal, D., Balamurugan, S., & Mallick, P. S. (2013). Design of 8–4 and 9–4 compressors for high speed multiplication. American Journal of Applied Sciences, 10(8), 893.CrossRef Marimuthu, R., Bansal, D., Balamurugan, S., & Mallick, P. S. (2013). Design of 8–4 and 9–4 compressors for high speed multiplication. American Journal of Applied Sciences, 10(8), 893.CrossRef
30.
go back to reference Silveira, B., Paim, G., Abreu, B., Grellert, M., Diniz, C. M., da Costa, E. A. C., & Bampi, S. (2017). Power-efficient sum of absolute differences hardware architecture using adder compressors for integer motion estimation design. IEEE Transactions on Circuits and Systems I: Regular Papers, 64(12), 3126–3137.CrossRef Silveira, B., Paim, G., Abreu, B., Grellert, M., Diniz, C. M., da Costa, E. A. C., & Bampi, S. (2017). Power-efficient sum of absolute differences hardware architecture using adder compressors for integer motion estimation design. IEEE Transactions on Circuits and Systems I: Regular Papers, 64(12), 3126–3137.CrossRef
31.
go back to reference Rouholamini, M., Kavehie, O., Mirbaha, A. P., Jasbi, S. J. & Navi, K. (2007, May). A new design for 7: 2 compressors. In 2007 IEEE/ACS International Conference on Computer Systems and Applications (pp. 474–478). IEEE. Rouholamini, M., Kavehie, O., Mirbaha, A. P., Jasbi, S. J. & Navi, K. (2007, May). A new design for 7: 2 compressors. In 2007 IEEE/ACS International Conference on Computer Systems and Applications (pp. 474–478). IEEE.
32.
go back to reference Schiavon, T., Paim, G., Fonseca, M., Costa, E. & Almeida, S., (2016). Exploiting adder compressors for power-efficient 2-D approximate DCT realization. In 2016 IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS) (pp. 383–386). IEEE. Schiavon, T., Paim, G., Fonseca, M., Costa, E. & Almeida, S., (2016). Exploiting adder compressors for power-efficient 2-D approximate DCT realization. In 2016 IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS) (pp. 383–386). IEEE.
33.
go back to reference Venkatachalam, S., & Ko, S. B. (2017). Design of power and area efficient approximate multipliers. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 25(5), 1782–1786.CrossRef Venkatachalam, S., & Ko, S. B. (2017). Design of power and area efficient approximate multipliers. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 25(5), 1782–1786.CrossRef
Metadata
Title
Design of Energy Efficient Multiplier with Approximate Computing on Scalable Compressor for Error-Resilient Image Contrast Enhancement
Authors
M. Maria Dominic Savio
T. Deepa
Publication date
26-06-2022
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 4/2022
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-022-09907-4

Other articles of this Issue 4/2022

Wireless Personal Communications 4/2022 Go to the issue