Skip to main content
Top

2019 | OriginalPaper | Chapter

Design of Graphene-Based THz Antennas

Authors : Arun Kumar Varshney, Nagendra Prasad Pathak, Debabrata Sircar

Published in: Computing, Communication and Signal Processing

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper first reports the design of the tunable graphene-based patch antenna at THz frequencies. After that a tunable graphene-based U slot loaded patch antenna has been designed to increase the bandwidth at THz frequencies. The simulated results for both the antennas are presented for different values of chemical potential.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)CrossRef Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)CrossRef
2.
go back to reference Castro Neto, A.H., et al.: The electronic properties of graphene. Rev. Modern Phys. 81(1), 109–162 (2009)CrossRef Castro Neto, A.H., et al.: The electronic properties of graphene. Rev. Modern Phys. 81(1), 109–162 (2009)CrossRef
3.
go back to reference Wu, Y.H., Yu, T., Shen, Z.X.: Two-dimensional carbon nanostructures: Fundamental properties, synthesis, characterization, and potential applications. J. Appl. Phys. 108(7), 071301 (2010)CrossRef Wu, Y.H., Yu, T., Shen, Z.X.: Two-dimensional carbon nanostructures: Fundamental properties, synthesis, characterization, and potential applications. J. Appl. Phys. 108(7), 071301 (2010)CrossRef
4.
go back to reference Yurchenko, S.O., Komarov, K.A., Pustovoit, V.I.: Multilayer-graphene-based amplifier of surface acoustic waves. AIP Adv. 5(057144), 1–12 (2015) Yurchenko, S.O., Komarov, K.A., Pustovoit, V.I.: Multilayer-graphene-based amplifier of surface acoustic waves. AIP Adv. 5(057144), 1–12 (2015)
5.
go back to reference Al-Dirini, F., Mohammed, M.A., Hossain, F.M., Nirmalathas, T., Skafidas, E.: All-graphene planar double-quantum-dot resonant tunneling diodes. J. Electron Device Soc. 4, 30–39 (2016)CrossRef Al-Dirini, F., Mohammed, M.A., Hossain, F.M., Nirmalathas, T., Skafidas, E.: All-graphene planar double-quantum-dot resonant tunneling diodes. J. Electron Device Soc. 4, 30–39 (2016)CrossRef
6.
go back to reference Fahad, M.S., Srivastava, A., Sharma, A.K., Mayberry, C.: Analytical current transport modeling of graphene nanoribbon tunnel field-effect transistors for digital circuit design. IEEE Trans. Nanotechnol. 15, 39–50 (2016)CrossRef Fahad, M.S., Srivastava, A., Sharma, A.K., Mayberry, C.: Analytical current transport modeling of graphene nanoribbon tunnel field-effect transistors for digital circuit design. IEEE Trans. Nanotechnol. 15, 39–50 (2016)CrossRef
7.
go back to reference Li, Y., et al.: Graphene-based floating-gate nonvolatile optical switch. IEEE Photon. Technol. Lett. 28, 284–287 (2016)CrossRef Li, Y., et al.: Graphene-based floating-gate nonvolatile optical switch. IEEE Photon. Technol. Lett. 28, 284–287 (2016)CrossRef
8.
go back to reference Mao, X., et al.: Optoelectronic mixer based on graphene FET. IEEE Electron Device Lett. 36, 253–255 (2015)CrossRef Mao, X., et al.: Optoelectronic mixer based on graphene FET. IEEE Electron Device Lett. 36, 253–255 (2015)CrossRef
9.
go back to reference Correas-Serrano, D., Gomez-Diaz, J.S., Perruisseau-Carrier, J., Alvarez-Melcon, A.: Graphene-based plasmonic tunable low-pass filters in the terahertz band. IEEE Trans. Nanotechnol. 13, 1145–1153 (2014)CrossRef Correas-Serrano, D., Gomez-Diaz, J.S., Perruisseau-Carrier, J., Alvarez-Melcon, A.: Graphene-based plasmonic tunable low-pass filters in the terahertz band. IEEE Trans. Nanotechnol. 13, 1145–1153 (2014)CrossRef
10.
go back to reference Wang, X.-C., Zhao, W.-S., Hu, J., Yin, W.-Y.: Reconfigurable terahertz leaky-wave antenna using graphene-based high-impedance Surface. IEEE Trans. Nanotechnol. 14, 62–69 (2015)CrossRef Wang, X.-C., Zhao, W.-S., Hu, J., Yin, W.-Y.: Reconfigurable terahertz leaky-wave antenna using graphene-based high-impedance Surface. IEEE Trans. Nanotechnol. 14, 62–69 (2015)CrossRef
11.
go back to reference Zangeneh-Nejad, F., Safian, R.: A tunable high-impedance THz antenna array. In: 23rd Iranian Conference on Electrical Engineering (2015) Zangeneh-Nejad, F., Safian, R.: A tunable high-impedance THz antenna array. In: 23rd Iranian Conference on Electrical Engineering (2015)
12.
go back to reference Yao, G., et al.: Dynamically electrically tunable broadband absorber based on graphene analog of electromagnetically induced transparency. IEEE Photon. J. 8(7800808), 1–8 (2016) Yao, G., et al.: Dynamically electrically tunable broadband absorber based on graphene analog of electromagnetically induced transparency. IEEE Photon. J. 8(7800808), 1–8 (2016)
13.
go back to reference Wang, Y., Chen, Q., Shen, X.: Actively controlled plasmonic Bragg reflector based on a graphene parallel-plate waveguide. AIP Adv. 5(077152), 1–7 (2015) Wang, Y., Chen, Q., Shen, X.: Actively controlled plasmonic Bragg reflector based on a graphene parallel-plate waveguide. AIP Adv. 5(077152), 1–7 (2015)
14.
go back to reference Zheng, R., Gao, D., Dong, J.: Ultra-compact broadband tunable graphene plasmonic multimode interferometer. IEEE Photon. Technol. Lett. 28, 645–648 (2016)CrossRef Zheng, R., Gao, D., Dong, J.: Ultra-compact broadband tunable graphene plasmonic multimode interferometer. IEEE Photon. Technol. Lett. 28, 645–648 (2016)CrossRef
15.
go back to reference Huang, C.-H., Yu, S.-C., Lai, Y.-C., Chi, G.-C., Yu, P.: Efficiency enhancement of organic/GaAs hybrid photovoltaic cells using transparent graphene as front electrode. IEEE J. Photovolt. 6, 480–485 (2016)CrossRef Huang, C.-H., Yu, S.-C., Lai, Y.-C., Chi, G.-C., Yu, P.: Efficiency enhancement of organic/GaAs hybrid photovoltaic cells using transparent graphene as front electrode. IEEE J. Photovolt. 6, 480–485 (2016)CrossRef
16.
go back to reference de Oliveira, R.E.P., de Matos, C.J.S.: Graphene based waveguide Polarizers: In Depth physical analysis and relevant parameters. Graphene and Nanomaterials Research Center, Mackenzie Presbyterian University, Sao Paulo, 01302-907, Brazil (2015) de Oliveira, R.E.P., de Matos, C.J.S.: Graphene based waveguide Polarizers: In Depth physical analysis and relevant parameters. Graphene and Nanomaterials Research Center, Mackenzie Presbyterian University, Sao Paulo, 01302-907, Brazil (2015)
17.
go back to reference Conteduca, D., Dell’Olio, F., Ciminelli, C., Armenise, M.N.: Resonant graphene-based tunable optical delay line. IEEE Photonics J. 7(7802409), 1–9 (2015)CrossRef Conteduca, D., Dell’Olio, F., Ciminelli, C., Armenise, M.N.: Resonant graphene-based tunable optical delay line. IEEE Photonics J. 7(7802409), 1–9 (2015)CrossRef
18.
go back to reference Hanson, G.W.: Dyadic greens functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. 103, 064302 (2008)CrossRef Hanson, G.W.: Dyadic greens functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. 103, 064302 (2008)CrossRef
Metadata
Title
Design of Graphene-Based THz Antennas
Authors
Arun Kumar Varshney
Nagendra Prasad Pathak
Debabrata Sircar
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-1513-8_4