Skip to main content
Top
Published in:
Cover of the book

2013 | OriginalPaper | Chapter

Design of Pathway-Level Bioprocess Monitoring and Control Strategies Supported by Metabolic Networks

Authors : Inês A. Isidro, Ana R. Ferreira, João J. Clemente, António E. Cunha, João M. L. Dias, Rui Oliveira

Published in: Measurement, Monitoring, Modelling and Control of Bioprocesses

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter we explore the basic tools for the design of bioprocess monitoring, optimization, and control algorithms that incorporate a priori knowledge of metabolic networks. The main advantage is that this ultimately enables the targeting of intracellular control variables such as metabolic reactions or metabolic pathways directly linked with productivity and product quality. We analyze in particular design methods that target elementary modes of metabolic networks. The topics covered include the analysis of the structure of metabolic networks, computation and reduction of elementary modes, measurement methods for the envirome, envirome-guided metabolic reconstruction, and macroscopic dynamic modeling and control. These topics are illustrated with applications to a cultivation process of a recombinant Pichia pastoris X33 strain expressing a single-chain antibody fragment (scFv).

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bastin G, Dochain D (1990) On-line estimation and adaptive control of bioreactors. Elsevier, Amsterdam Bastin G, Dochain D (1990) On-line estimation and adaptive control of bioreactors. Elsevier, Amsterdam
2.
go back to reference Otero JM, Nielsen J (2010) Industrial systems biology. Biotechnol Bioeng 105:439–460CrossRef Otero JM, Nielsen J (2010) Industrial systems biology. Biotechnol Bioeng 105:439–460CrossRef
3.
go back to reference Talarek N, Cameroni E, Jaquenoud M et al (2010) Initiation of the TORC1-regulated G(0) program requires Igo1/2, which license specific mRNAs to evade degradation via the 5′-3′ mRNA decay pathway. Mol Cell 38:345–355CrossRef Talarek N, Cameroni E, Jaquenoud M et al (2010) Initiation of the TORC1-regulated G(0) program requires Igo1/2, which license specific mRNAs to evade degradation via the 5′-3′ mRNA decay pathway. Mol Cell 38:345–355CrossRef
4.
go back to reference Borenstein E, Kupiec M, Feldman MW, Ruppin E (2008) Large-scale reconstruction and phylogenetic analysis of metabolic environments. Proc Natl Acad Sci U S A 105:14482–14487CrossRef Borenstein E, Kupiec M, Feldman MW, Ruppin E (2008) Large-scale reconstruction and phylogenetic analysis of metabolic environments. Proc Natl Acad Sci U S A 105:14482–14487CrossRef
5.
go back to reference Kell DB, Brown M, Davey HM et al (2005) Metabolic footprinting and systems biology: the medium is the message. Nat Rev Microbiol 3:557–565CrossRef Kell DB, Brown M, Davey HM et al (2005) Metabolic footprinting and systems biology: the medium is the message. Nat Rev Microbiol 3:557–565CrossRef
6.
go back to reference Allen J, Davey HM, Broadhurst D et al (2003) High-throughput classification of yeast mutants for functional genomics using metabolic footprinting. Nat Biotechnol 21:692–696CrossRef Allen J, Davey HM, Broadhurst D et al (2003) High-throughput classification of yeast mutants for functional genomics using metabolic footprinting. Nat Biotechnol 21:692–696CrossRef
7.
go back to reference Teixeira AP, Dias JML, Carinhas N et al (2011) Cell functional enviromics: unravelling the function of environmental factors. BMC Syst Biol 5:92CrossRef Teixeira AP, Dias JML, Carinhas N et al (2011) Cell functional enviromics: unravelling the function of environmental factors. BMC Syst Biol 5:92CrossRef
8.
go back to reference Haag JE, Wouwer AV, Bogaerts P (2005) Dynamic modeling of complex biological systems: a link between metabolic and macroscopic description. Math Biosci 193:25–49CrossRef Haag JE, Wouwer AV, Bogaerts P (2005) Dynamic modeling of complex biological systems: a link between metabolic and macroscopic description. Math Biosci 193:25–49CrossRef
9.
go back to reference Provost A, Bastin G (2004) Dynamic metabolic modelling under the balanced growth condition. J Process Contr 14:717–728CrossRef Provost A, Bastin G (2004) Dynamic metabolic modelling under the balanced growth condition. J Process Contr 14:717–728CrossRef
10.
go back to reference Schuster S, Fell DA, Dandekar T (2000) A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat Biotechnol 18:326–332CrossRef Schuster S, Fell DA, Dandekar T (2000) A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat Biotechnol 18:326–332CrossRef
11.
go back to reference Teixeira AP, Alves C, Alves PM et al (2007) Hybrid elementary flux analysis/nonparametric modeling: application for bioprocess control. BMC Bioinform 8:30CrossRef Teixeira AP, Alves C, Alves PM et al (2007) Hybrid elementary flux analysis/nonparametric modeling: application for bioprocess control. BMC Bioinform 8:30CrossRef
12.
go back to reference Feist AM, Palsson BO (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nat Biotech 26:659–667CrossRef Feist AM, Palsson BO (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nat Biotech 26:659–667CrossRef
13.
go back to reference Ferreira A, Dias J, Teixeira A et al (2011) Projection to latent pathways (PLP): a constrained projection to latent variables (PLS) method for elementary flux modes discrimination. BMC Syst Biol 5:181CrossRef Ferreira A, Dias J, Teixeira A et al (2011) Projection to latent pathways (PLP): a constrained projection to latent variables (PLS) method for elementary flux modes discrimination. BMC Syst Biol 5:181CrossRef
14.
go back to reference Song H-S, Ramkrishna D (2009) Reduction of a set of elementary modes using yield analysis. Biotechnol Bioeng 102:554–568CrossRef Song H-S, Ramkrishna D (2009) Reduction of a set of elementary modes using yield analysis. Biotechnol Bioeng 102:554–568CrossRef
15.
go back to reference Pagani I, Liolios K, Jansson J et al (2012) The genomes online database (GOLD) v. 4: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res 40:D571–D579CrossRef Pagani I, Liolios K, Jansson J et al (2012) The genomes online database (GOLD) v. 4: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res 40:D571–D579CrossRef
16.
go back to reference Tajparast M, Frigon D (2012) Genome-scale metabolic modeling to provide insight into the production of storage compounds during feast-famine cycles of activated sludge. In: Paper presented at the 3rd IWA/WEF wastewater treatment modeling seminar, Mont-Sainte-Anne, Quebec, 26–28 February 2012 Tajparast M, Frigon D (2012) Genome-scale metabolic modeling to provide insight into the production of storage compounds during feast-famine cycles of activated sludge. In: Paper presented at the 3rd IWA/WEF wastewater treatment modeling seminar, Mont-Sainte-Anne, Quebec, 26–28 February 2012
19.
go back to reference Janga SC, Babu MM (2008) Network-based approaches for linking metabolism with environment. Genome Biol 9:239CrossRef Janga SC, Babu MM (2008) Network-based approaches for linking metabolism with environment. Genome Biol 9:239CrossRef
20.
go back to reference Feist AM, Herrgard MJ, Thiele I et al (2009) Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 7:129–143 Feist AM, Herrgard MJ, Thiele I et al (2009) Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 7:129–143
21.
go back to reference Orth JD, Palsson BO (2010) Systematizing the generation of missing metabolic knowledge. Biotechnol Bioeng 107:403–412CrossRef Orth JD, Palsson BO (2010) Systematizing the generation of missing metabolic knowledge. Biotechnol Bioeng 107:403–412CrossRef
22.
go back to reference Feist AM, Henry CS, Reed JL et al. (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 3:121 Feist AM, Henry CS, Reed JL et al. (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 3:121
23.
go back to reference Herrgard MJ, Swainston N, Dobson P et al (2008) A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat Biotechnol 26:1155–1160CrossRef Herrgard MJ, Swainston N, Dobson P et al (2008) A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat Biotechnol 26:1155–1160CrossRef
24.
go back to reference Chung BKS, Selvarasu S, Andrea C et al (2010) Genome-scale metabolic reconstruction and in silico analysis of methylotrophic yeast Pichia pastoris for strain improvement. Microb Cell Fact 9:50 Chung BKS, Selvarasu S, Andrea C et al (2010) Genome-scale metabolic reconstruction and in silico analysis of methylotrophic yeast Pichia pastoris for strain improvement. Microb Cell Fact 9:50
25.
go back to reference Sohn SB, Graf AB, Kim TY et al (2010) Genome-scale metabolic model of methylotrophic yeast Pichia pastoris and its use for in silico analysis of heterologous protein production. Biotechnol J 5:705–715CrossRef Sohn SB, Graf AB, Kim TY et al (2010) Genome-scale metabolic model of methylotrophic yeast Pichia pastoris and its use for in silico analysis of heterologous protein production. Biotechnol J 5:705–715CrossRef
26.
go back to reference Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:U101–U115CrossRef Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:U101–U115CrossRef
27.
go back to reference Bernhardsson S, Gerlee P, Lizana L (2011) Structural correlations in bacterial metabolic networks. BMC Evol Biol 11:20 Bernhardsson S, Gerlee P, Lizana L (2011) Structural correlations in bacterial metabolic networks. BMC Evol Biol 11:20
28.
go back to reference Schuster S, Dandekar T, Fell DA (1999) Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol 17:53–60CrossRef Schuster S, Dandekar T, Fell DA (1999) Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol 17:53–60CrossRef
29.
go back to reference Papin JA, Stelling J, Price ND et al (2004) Comparison of network-based pathway analysis methods. Trends Biotechnol 22:400–405CrossRef Papin JA, Stelling J, Price ND et al (2004) Comparison of network-based pathway analysis methods. Trends Biotechnol 22:400–405CrossRef
30.
go back to reference Celik E, Calik P, Oliver SG (2010) Metabolic Flux Analysis for recombinant protein production by Pichia pastoris using dualcarbon sources: effects of methanol feeding rate. Biotechnol Bioeng 105:317–329CrossRef Celik E, Calik P, Oliver SG (2010) Metabolic Flux Analysis for recombinant protein production by Pichia pastoris using dualcarbon sources: effects of methanol feeding rate. Biotechnol Bioeng 105:317–329CrossRef
31.
go back to reference von Kamp A, Schuster S (2006) Metatool 5.0: fast and flexible elementary modes analysis. Bioinformatics 22:1930–1931CrossRef von Kamp A, Schuster S (2006) Metatool 5.0: fast and flexible elementary modes analysis. Bioinformatics 22:1930–1931CrossRef
32.
go back to reference Oliver SG, Winson MK, Kell DB, Baganz F (1998) Systematic functional analysis of the yeast genome. Trends Biotechnol 16:373–378CrossRef Oliver SG, Winson MK, Kell DB, Baganz F (1998) Systematic functional analysis of the yeast genome. Trends Biotechnol 16:373–378CrossRef
33.
go back to reference Nielsen J, Oliver S (2005) The next wave in metabolome analysis. Trends Biotechnol 23:544–546CrossRef Nielsen J, Oliver S (2005) The next wave in metabolome analysis. Trends Biotechnol 23:544–546CrossRef
34.
go back to reference Fiehn O (2002) Metabolomics—the link between genotypes and phenotypes. Plant Mol Biol 48:155–171CrossRef Fiehn O (2002) Metabolomics—the link between genotypes and phenotypes. Plant Mol Biol 48:155–171CrossRef
35.
go back to reference Nicholson JK, Lindon JC, Holmes E (1999) ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29:1181–1189CrossRef Nicholson JK, Lindon JC, Holmes E (1999) ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29:1181–1189CrossRef
36.
go back to reference de Koning W, van Dam K (1992) A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH. Anal Biochem 204:118–123CrossRef de Koning W, van Dam K (1992) A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH. Anal Biochem 204:118–123CrossRef
37.
go back to reference Raamsdonk LM, Teusink B, Broadhurst D et al (2001) A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat Biotechnol 19:45–50CrossRef Raamsdonk LM, Teusink B, Broadhurst D et al (2001) A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat Biotechnol 19:45–50CrossRef
38.
go back to reference Duarte I, Barros A, Belton PS et al (2002) High-resolution nuclear magnetic resonance spectroscopy and multivariate analysis for the characterization of beer. J Agric Food Chem 50:2475–2481CrossRef Duarte I, Barros A, Belton PS et al (2002) High-resolution nuclear magnetic resonance spectroscopy and multivariate analysis for the characterization of beer. J Agric Food Chem 50:2475–2481CrossRef
39.
go back to reference Castrillo JI, Hayes A, Mohammed S et al (2003) An optimized protocol for metabolome analysis in yeast using direct infusion electrospray mass spectrometry. Phytochemistry 62:929–937CrossRef Castrillo JI, Hayes A, Mohammed S et al (2003) An optimized protocol for metabolome analysis in yeast using direct infusion electrospray mass spectrometry. Phytochemistry 62:929–937CrossRef
40.
go back to reference Soga T, Ohashi Y, Ueno Y et al (2003) Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. J Proteome Res 2:488–494CrossRef Soga T, Ohashi Y, Ueno Y et al (2003) Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. J Proteome Res 2:488–494CrossRef
41.
go back to reference Fiehn O, Kopka J, Dormann P et al (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18:1157–1161CrossRef Fiehn O, Kopka J, Dormann P et al (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18:1157–1161CrossRef
42.
go back to reference Wolfender JL, Ndjoko K, Hostettmann K (2003) Liquid chromatography with ultraviolet absorbance-mass spectrometric detection and with nuclear magnetic resonance spectroscopy: a powerful combination for the on-line structural investigation of plant metabolites. J Chromatogr 1000:437–455CrossRef Wolfender JL, Ndjoko K, Hostettmann K (2003) Liquid chromatography with ultraviolet absorbance-mass spectrometric detection and with nuclear magnetic resonance spectroscopy: a powerful combination for the on-line structural investigation of plant metabolites. J Chromatogr 1000:437–455CrossRef
43.
go back to reference Hollywood K, Brison DR, Goodacre R (2006) Metabolomics: current technologies and future trends. Proteomics 6:4716–4723CrossRef Hollywood K, Brison DR, Goodacre R (2006) Metabolomics: current technologies and future trends. Proteomics 6:4716–4723CrossRef
44.
go back to reference Oldiges M, Lutz S, Pflug S et al (2007) Metabolomics: current state and evolving methodologies and tools. Appl Microbiol Biotechnol 76:495–511CrossRef Oldiges M, Lutz S, Pflug S et al (2007) Metabolomics: current state and evolving methodologies and tools. Appl Microbiol Biotechnol 76:495–511CrossRef
45.
go back to reference Tredwell GD, Edwards-Jones B, Leak DJ, Bundy JG (2011) The Development of metabolomic sampling procedures for Pichia pastoris and baseline metabolome data. PLoS One 6:e16286CrossRef Tredwell GD, Edwards-Jones B, Leak DJ, Bundy JG (2011) The Development of metabolomic sampling procedures for Pichia pastoris and baseline metabolome data. PLoS One 6:e16286CrossRef
46.
go back to reference Urbanczyk-Wochniak E, Luedemann A, Kopka J et al (2003) Parallel analysis of transcript and metabolic profiles: a new approach in systems biology. EMBO Rep 4:989–993CrossRef Urbanczyk-Wochniak E, Luedemann A, Kopka J et al (2003) Parallel analysis of transcript and metabolic profiles: a new approach in systems biology. EMBO Rep 4:989–993CrossRef
47.
go back to reference ter Kuile BH, Westerhoff HV (2001) Transcriptome meets metabolome: hierarchical and metabolic regulation of the glycolytic pathway. FEBS Lett 500:169–171CrossRef ter Kuile BH, Westerhoff HV (2001) Transcriptome meets metabolome: hierarchical and metabolic regulation of the glycolytic pathway. FEBS Lett 500:169–171CrossRef
48.
go back to reference Dunn WB, Ellis DI (2005) Metabolomics: current analytical platforms and methodologies. Trends Anal Chem 24:285–294CrossRef Dunn WB, Ellis DI (2005) Metabolomics: current analytical platforms and methodologies. Trends Anal Chem 24:285–294CrossRef
49.
go back to reference Terzer M, Stelling J (2008) Large-scale computation of elementary flux modes with bit pattern trees. Bioinformatics 24:2229–2235CrossRef Terzer M, Stelling J (2008) Large-scale computation of elementary flux modes with bit pattern trees. Bioinformatics 24:2229–2235CrossRef
50.
go back to reference Edwards JS, Palsson BO (2000) The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc Natl Acad Sci U S A 97:5528–5533CrossRef Edwards JS, Palsson BO (2000) The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc Natl Acad Sci U S A 97:5528–5533CrossRef
51.
go back to reference de Figueiredo LF, Podhorski A, Rubio A et al (2009) Computing the shortest elementary flux modes in genome-scale metabolic networks. Bioinformatics 25:3158–3165CrossRef de Figueiredo LF, Podhorski A, Rubio A et al (2009) Computing the shortest elementary flux modes in genome-scale metabolic networks. Bioinformatics 25:3158–3165CrossRef
52.
go back to reference Wlaschin AP, Trinh CT, Carlson R, Srienc F (2006) The fractional contributions of elementary modes to the metabolism of Escherichia coli and their estimation from reaction entropies. Metab Eng 8:338–352CrossRef Wlaschin AP, Trinh CT, Carlson R, Srienc F (2006) The fractional contributions of elementary modes to the metabolism of Escherichia coli and their estimation from reaction entropies. Metab Eng 8:338–352CrossRef
53.
go back to reference Zhao Q, Kurata H (2009) Maximum entropy decomposition of flux distribution at steady state to elementary modes. J Biosci Bioeng 107:84–89CrossRef Zhao Q, Kurata H (2009) Maximum entropy decomposition of flux distribution at steady state to elementary modes. J Biosci Bioeng 107:84–89CrossRef
54.
go back to reference Wiback SJ, Mahadevan R, Palsson BO (2003) Reconstructing metabolic flux vectors from extreme pathways: defining the alpha-spectrum. J Theor Biol 224:313–324CrossRef Wiback SJ, Mahadevan R, Palsson BO (2003) Reconstructing metabolic flux vectors from extreme pathways: defining the alpha-spectrum. J Theor Biol 224:313–324CrossRef
55.
go back to reference Wiback SJ, Mahadevan R, Palsson BO (2004) Using metabolic flux data to further constrain the metabolic solution space and predict internal flux patterns: the Escherichia coli spectrum. Biotechnol Bioeng 86:317–331CrossRef Wiback SJ, Mahadevan R, Palsson BO (2004) Using metabolic flux data to further constrain the metabolic solution space and predict internal flux patterns: the Escherichia coli spectrum. Biotechnol Bioeng 86:317–331CrossRef
56.
go back to reference Wang Q, Yang Y, Ma H, Zhao X (2007) Metabolic network properties help assign weights to elementary modes to understand physiological flux distributions. Bioinformatics 23:1049–1052CrossRef Wang Q, Yang Y, Ma H, Zhao X (2007) Metabolic network properties help assign weights to elementary modes to understand physiological flux distributions. Bioinformatics 23:1049–1052CrossRef
57.
go back to reference Nookaew I, Meechai A, Thammarongtham C et al (2007) Identification of flux regulation coefficients from elementary flux modes: a systems biology tool for analysis of metabolic networks. Biotechnol Bioeng 97:1535–1549CrossRef Nookaew I, Meechai A, Thammarongtham C et al (2007) Identification of flux regulation coefficients from elementary flux modes: a systems biology tool for analysis of metabolic networks. Biotechnol Bioeng 97:1535–1549CrossRef
58.
go back to reference Schwartz J-M, Kanehisa M (2006) Quantitative elementary mode analysis of metabolic pathways: the example of yeast glycolysis. BMC Bioinform 7:186 Schwartz J-M, Kanehisa M (2006) Quantitative elementary mode analysis of metabolic pathways: the example of yeast glycolysis. BMC Bioinform 7:186
59.
go back to reference Jungers RM, Zamorano F, Blondel VD et al (2011) Fast computation of minimal elementary decompositions of metabolic flux vectors. Automatica 47:1255–1259CrossRef Jungers RM, Zamorano F, Blondel VD et al (2011) Fast computation of minimal elementary decompositions of metabolic flux vectors. Automatica 47:1255–1259CrossRef
60.
go back to reference Ferreira AR, Ataide F, von Stosch M et al (2012) Application of adaptive DO-stat feeding control to Pichia pastoris X33 cultures expressing a single chain antibody fragment (scFv). Bioprocess Biosyst Eng 35:1603–1614 Ferreira AR, Ataide F, von Stosch M et al (2012) Application of adaptive DO-stat feeding control to Pichia pastoris X33 cultures expressing a single chain antibody fragment (scFv). Bioprocess Biosyst Eng 35:1603–1614
Metadata
Title
Design of Pathway-Level Bioprocess Monitoring and Control Strategies Supported by Metabolic Networks
Authors
Inês A. Isidro
Ana R. Ferreira
João J. Clemente
António E. Cunha
João M. L. Dias
Rui Oliveira
Copyright Year
2013
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/10_2012_168

Premium Partners