Skip to main content
Top

2021 | OriginalPaper | Chapter

6. Design und Entwicklung

Authors : Victor Kaupe, Carsten Feldmann, Martin Lucas

Published in: Exoskelette in der Intralogistik

Publisher: Springer Fachmedien Wiesbaden

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Zusammenfassung

Ein Modell ist die vereinfachte Darstellung eines komplexen Systems, welche die Darstellung der realen Welt auf elementare, wesentliche Aspekte und Gesetze reduziert und damit vereinfacht. Der Gegenstand des Modells, der Implementierungsprozess einer Exoskelett-Lösung, wird systematisch beschrieben, um wichtige Eigenschaften vergleichbar zu machen und damit den Bezug zu realen Gegenstücken zu schaffen.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
[2].
 
2
[10].
 
3
[59].
 
4
[8].
 
5
[30, 48].
 
6
[20].
 
7
[49].
 
8
[19, 20, 62].
 
9
[26].
 
10
[19].
 
11
[18, 58].
 
12
[26].
 
13
[57].
 
14
[18, 26, 57].
 
15
[26].
 
16
[26].
 
17
[56].
 
18
[30].
 
19
[26].
 
20
[16].
 
21
[20].
 
22
[51].
 
23
[26].
 
24
[30, 55].
 
25
[26, 51, 57].
 
26
[20, 30].
 
27
[57, 14].
 
28
[51, 57].
 
29
[62].
 
30
[20, 48, 62].
 
31
[23, 37].
 
32
[41].
 
33
[22].
 
34
[25].
 
35
[9, 13, 18, 51, 58].
 
36
[63].
 
37
[27].
 
38
[38].
 
39
[48].
 
40
[17].
 
41
[31].
 
42
[31].
 
43
[30].
 
44
[30].
 
45
[26].
 
46
[36].
 
47
[11, 34, 48, 62].
 
48
[44, 61].
 
49
[62].
 
50
[38].
 
51
[26].
 
52
[38].
 
53
[20].
 
54
[30].
 
Literature
2.
go back to reference Adam, D. (1997). Planung und Entscheidung: Modelle – Ziele – Methoden (4. Aufl.). Wiesbaden: Gabler. Adam, D. (1997). Planung und Entscheidung: Modelle – Ziele – Methoden (4. Aufl.). Wiesbaden: Gabler.
10.
go back to reference Börner, K., Boyack, K. W., Milojević, S., & Morris, S. (2012). An introduction to modeling science: Basic model types, key definitions, and a general framework for the comparison of process models. In A. Scharnhorst (Hrsg.), Models of science dynamics: Encounters between complexity theory and information sciences. Berlin/Heidelberg: Springer. Börner, K., Boyack, K. W., Milojević, S., & Morris, S. (2012). An introduction to modeling science: Basic model types, key definitions, and a general framework for the comparison of process models. In A. Scharnhorst (Hrsg.), Models of science dynamics: Encounters between complexity theory and information sciences. Berlin/Heidelberg: Springer.
59.
go back to reference Vom Brocke, J. (2007). Design principles for reference modeling: Reusing information models by means of aggregation, specialisation, instantiation, and analogy. In Reference modeling for business systems analysis (S. 47–76). IGI Global. Vom Brocke, J. (2007). Design principles for reference modeling: Reusing information models by means of aggregation, specialisation, instantiation, and analogy. In Reference modeling for business systems analysis (S. 47–76). IGI Global.
8.
go back to reference Becker, J., Rosemann, M., & Schütte, R. (1995). Grundsätze ordnungsmäßiger Modellierung. Wirtschaftsinformatik, 37(5), 435–445. Becker, J., Rosemann, M., & Schütte, R. (1995). Grundsätze ordnungsmäßiger Modellierung. Wirtschaftsinformatik, 37(5), 435–445.
30.
go back to reference Hensel, R., & Keil, M. (2018). Subjektive Evaluation industrieller Exoskelette im Rahmen von Feldstudien an ausgewählten Arbeitsplätzen. Zeitschrift für Arbeitswissenschaft, 72, 252–263.CrossRef Hensel, R., & Keil, M. (2018). Subjektive Evaluation industrieller Exoskelette im Rahmen von Feldstudien an ausgewählten Arbeitsplätzen. Zeitschrift für Arbeitswissenschaft, 72, 252–263.CrossRef
48.
go back to reference Rogge, T., Daub, U., Ebrahimi, A., & Fraunhofer, I. P. A. (2017). Status demonstration of the interdisciplinary development regarding the upper limb exoskeleton „Stuttgart Exo-Jacket“. In M. Bargende, H.-C. Reuss, & J. Wiedemann (Hrsg.), 17. Internationales Stuttgarter Symposium, Proceedings (S. 479–491). Rogge, T., Daub, U., Ebrahimi, A., & Fraunhofer, I. P. A. (2017). Status demonstration of the interdisciplinary development regarding the upper limb exoskeleton „Stuttgart Exo-Jacket“. In M. Bargende, H.-C. Reuss, & J. Wiedemann (Hrsg.), 17. Internationales Stuttgarter Symposium, Proceedings (S. 479–491).
20.
go back to reference Daub, U. (2017). Evaluation aspects of potential influences on human beings by wearing exoskeletal systems. In 17. Internationales Stuttgarter Symposium (S. 1331–1344). Wiesbaden: Springer Vieweg.CrossRef Daub, U. (2017). Evaluation aspects of potential influences on human beings by wearing exoskeletal systems. In 17. Internationales Stuttgarter Symposium (S. 1331–1344). Wiesbaden: Springer Vieweg.CrossRef
49.
go back to reference Sahashi, K., Murai, S., & Takahashi, Y. (2018). Power assist control based on learning database of joint angle of powered exoskeleton suitable for Wearer’s posture. In M. Antona & C. Stephanidis (Hrsg.), UAHCI 2018, LNCS 10908 (S. 340–346). Sahashi, K., Murai, S., & Takahashi, Y. (2018). Power assist control based on learning database of joint angle of powered exoskeleton suitable for Wearer’s posture. In M. Antona & C. Stephanidis (Hrsg.), UAHCI 2018, LNCS 10908 (S. 340–346).
19.
go back to reference Dahmen, C., Wöllecke, F., & Constantinescu, C. (2018b). Challenges and possible solutions for enhancing the workplaces of the future by integrating smart and adaptive exoskeletons. Procedia CIRP, 67, 268–273.CrossRef Dahmen, C., Wöllecke, F., & Constantinescu, C. (2018b). Challenges and possible solutions for enhancing the workplaces of the future by integrating smart and adaptive exoskeletons. Procedia CIRP, 67, 268–273.CrossRef
62.
go back to reference Winter, G., Felten, C., & Hedtmann, J. (2019). Testing of exoskeletons in the context of logistics – Application and limits of use. In C. Stephanidis (Hrsg.), HCII 2019, CCIS 1033 (S. 265–270). Winter, G., Felten, C., & Hedtmann, J. (2019). Testing of exoskeletons in the context of logistics – Application and limits of use. In C. Stephanidis (Hrsg.), HCII 2019, CCIS 1033 (S. 265–270).
26.
go back to reference Fox, S., Aranko, O., Heilala, J., & Vahala, P. (2019). Exoskeletons: Comprehensive, comparative and critical analyses of their potential to improve manufacturing performance. Journal of Manufacturing Technology Management. Fox, S., Aranko, O., Heilala, J., & Vahala, P. (2019). Exoskeletons: Comprehensive, comparative and critical analyses of their potential to improve manufacturing performance. Journal of Manufacturing Technology Management.
18.
go back to reference Dahmen, C., Hölzel, C., Wöllecke, F., & Constantinescu, C. (2018a). Approach of optimized planning process for exoskeleton centered workplace design. Procedia 51st CIRP Conference on Manufacturing Systems, 72, 1277–1282. Dahmen, C., Hölzel, C., Wöllecke, F., & Constantinescu, C. (2018a). Approach of optimized planning process for exoskeleton centered workplace design. Procedia 51st CIRP Conference on Manufacturing Systems, 72, 1277–1282.
58.
go back to reference Todorovic, O., Constantinescu, C., & Popescu, D. (2018). Foundations for economic evaluation of exoskeletons. Acta Technica Napocensis, Series: Applied Mathematics, Mechanics, and Engineering, 61(special), 221–230. Todorovic, O., Constantinescu, C., & Popescu, D. (2018). Foundations for economic evaluation of exoskeletons. Acta Technica Napocensis, Series: Applied Mathematics, Mechanics, and Engineering, 61(special), 221–230.
57.
go back to reference Sylla, N., Bonnet, V., Colledani, F., & Fraisse, P. (2014). Ergonomic contribution of ABLE exoskeleton in automotive industry. International Journal of Industrial Ergonomics, 44(4), 475–481.CrossRef Sylla, N., Bonnet, V., Colledani, F., & Fraisse, P. (2014). Ergonomic contribution of ABLE exoskeleton in automotive industry. International Journal of Industrial Ergonomics, 44(4), 475–481.CrossRef
5.
go back to reference Bai, S., & Christensen, S. (2017). Biomechanical hri modeling and mechatronic design of exoskeletons for assistive applications. In Human Modelling for Bio-Inspired Robotics (S. 251–272). London: Academic Press.CrossRef Bai, S., & Christensen, S. (2017). Biomechanical hri modeling and mechatronic design of exoskeletons for assistive applications. In Human Modelling for Bio-Inspired Robotics (S. 251–272). London: Academic Press.CrossRef
11.
go back to reference Bosch, T., van Eck, J., Knitel, K., & de Looze, M. (2016). The effects of a passive exoskeleton on muscle activity, discomfort and endurance time in forward bending work. Applied Ergonomics, 54, 212–217.CrossRef Bosch, T., van Eck, J., Knitel, K., & de Looze, M. (2016). The effects of a passive exoskeleton on muscle activity, discomfort and endurance time in forward bending work. Applied Ergonomics, 54, 212–217.CrossRef
12.
go back to reference Bueno, L., Brunetti, F., Frizera, A., Pons, J. L., & Moreno, J. (2008). Human-robot cognitive interaction. Wearable Robots: Biomechatronic Exoskeletons, 1, 87–126.CrossRef Bueno, L., Brunetti, F., Frizera, A., Pons, J. L., & Moreno, J. (2008). Human-robot cognitive interaction. Wearable Robots: Biomechatronic Exoskeletons, 1, 87–126.CrossRef
47.
go back to reference Rogge, T., Daub, U., Ebrahimi, A., & Schneider, U. (2016). Der interdisziplinäre Entwicklungsprozess von aktiv angetriebenen, körpergetragenen Exoskeletten für die oberen Extremitäten am Beispiel des „Stuttgart Exo-Jacket “. Technische Unterstützungssysteme, die die Menschen wirklich wollen, 213. Rogge, T., Daub, U., Ebrahimi, A., & Schneider, U. (2016). Der interdisziplinäre Entwicklungsprozess von aktiv angetriebenen, körpergetragenen Exoskeletten für die oberen Extremitäten am Beispiel des „Stuttgart Exo-Jacket “. Technische Unterstützungssysteme, die die Menschen wirklich wollen, 213.
56.
go back to reference Stewart, A. M., Pretty, C. G., Adams, M., & Chen, X. (2017). Review of upper limb hybrid exoskeletons. IFAC-PapersOnLine, 50(1), 15169–15178.CrossRef Stewart, A. M., Pretty, C. G., Adams, M., & Chen, X. (2017). Review of upper limb hybrid exoskeletons. IFAC-PapersOnLine, 50(1), 15169–15178.CrossRef
16.
go back to reference Dahmen, C., & Constantinescu, C. (2020). Methodology of employing exoskeleton technology in manufacturing by considering time-related and ergonomics influences. Applied Sciences, 10(5), 1591.CrossRef Dahmen, C., & Constantinescu, C. (2020). Methodology of employing exoskeleton technology in manufacturing by considering time-related and ergonomics influences. Applied Sciences, 10(5), 1591.CrossRef
51.
go back to reference Schmidtler, J., Knott, V., Hölzel, C., & Bengler, K. (2015). Human centered assistance applications for the working environment of the future. Occupational Ergonomics, 12(3), 83–95.CrossRef Schmidtler, J., Knott, V., Hölzel, C., & Bengler, K. (2015). Human centered assistance applications for the working environment of the future. Occupational Ergonomics, 12(3), 83–95.CrossRef
55.
go back to reference Steinhilber, B., Seibt, R., & Luger, T. (2018). Einsatz von Exoskeletten im beruflichen Kontext – Wirkung und Nebenwirkung. Arbeitsmedizin – Sozialmedizin – Umweltmedizin, 53, 662–664. Steinhilber, B., Seibt, R., & Luger, T. (2018). Einsatz von Exoskeletten im beruflichen Kontext – Wirkung und Nebenwirkung. Arbeitsmedizin – Sozialmedizin – Umweltmedizin, 53, 662–664.
14.
go back to reference Constantinescu, C., Muresan, P. C., & Simon, G. M. (2016). JackEx: The new digital manufacturing resource for optimization of Exoskeleton-based factory environments. Procedia CIRP, 50, 508–511.CrossRef Constantinescu, C., Muresan, P. C., & Simon, G. M. (2016). JackEx: The new digital manufacturing resource for optimization of Exoskeleton-based factory environments. Procedia CIRP, 50, 508–511.CrossRef
23.
go back to reference Doppler, K., & Lauterburg, C. (2014). Change management: den Unternehmenswandel gestalten (13. Aufl.). Frankfurt/New York: Campus. Doppler, K., & Lauterburg, C. (2014). Change management: den Unternehmenswandel gestalten (13. Aufl.). Frankfurt/New York: Campus.
37.
go back to reference Kotter, J. P. (2012). Leading change. Boston: Harvard business press. Kotter, J. P. (2012). Leading change. Boston: Harvard business press.
41.
go back to reference Nördinger, S. (2018). Stark und gesund – dank Exoskelett. Produktion, 2, 10–11. Nördinger, S. (2018). Stark und gesund – dank Exoskelett. Produktion, 2, 10–11.
9.
go back to reference Bogue, R. (2018). Exoskeletons – A review of industrial applications. Industrial Robot, 45(5), 585–590.CrossRef Bogue, R. (2018). Exoskeletons – A review of industrial applications. Industrial Robot, 45(5), 585–590.CrossRef
13.
go back to reference Butler, T. R. (2016). Exoskeleton technology: Making workers safer and more productive. Professional Safety, 61(09), 32–36. Butler, T. R. (2016). Exoskeleton technology: Making workers safer and more productive. Professional Safety, 61(09), 32–36.
63.
go back to reference Young, D. S., & O’Byrne, S. F. (2001). EVA and value-based management. New York: McGraw Hill. Young, D. S., & O’Byrne, S. F. (2001). EVA and value-based management. New York: McGraw Hill.
27.
go back to reference Feldmann, C., & Pumpe, A. (2017). A holistic decision framework for 3D printing investments in global supply chains. Transportation Research Procedia, 25, 677–694.CrossRef Feldmann, C., & Pumpe, A. (2017). A holistic decision framework for 3D printing investments in global supply chains. Transportation Research Procedia, 25, 677–694.CrossRef
38.
go back to reference Mathur, S., & Malik, S. (2010). Advancements in the V-Model. International Journal of Computer Applications, 1(12), 29–34.CrossRef Mathur, S., & Malik, S. (2010). Advancements in the V-Model. International Journal of Computer Applications, 1(12), 29–34.CrossRef
17.
go back to reference Dahmen, C., & Hefferle, M. (2018). Application of ergonomic assessment methods on an exoskeleton centered workplace. Proceedings of the The XXXth annual occupational ergonomics and safety conference Pittsburgh, USA. Dahmen, C., & Hefferle, M. (2018). Application of ergonomic assessment methods on an exoskeleton centered workplace. Proceedings of the The XXXth annual occupational ergonomics and safety conference Pittsburgh, USA.
31.
go back to reference Hensel, R., & Steinhilber, B. (2018). Bewertung von Exoskeletten für industrielle Arbeitsplätze. In R. Weidner & A. Karafillidis (Hrsg.), Technische Unterstützungssysteme, die die Menschen wirklich wollen. Hamburg, 11 December 2018. Hensel, R., & Steinhilber, B. (2018). Bewertung von Exoskeletten für industrielle Arbeitsplätze. In R. Weidner & A. Karafillidis (Hrsg.), Technische Unterstützungssysteme, die die Menschen wirklich wollen. Hamburg, 11 December 2018.
36.
go back to reference Kim, S., Nussbaum, M. A., Esfahani, M. I. M., Alemi, M. M., Alabdulkarim, S., & Rashedi, E. (2018). Assessing the influence of a passive, upper extremity exoskeletal vest for tasks requiring arm elevation: Part I, Part II. Applied Ergonomics, 70, 315–330.CrossRef Kim, S., Nussbaum, M. A., Esfahani, M. I. M., Alemi, M. M., Alabdulkarim, S., & Rashedi, E. (2018). Assessing the influence of a passive, upper extremity exoskeletal vest for tasks requiring arm elevation: Part I, Part II. Applied Ergonomics, 70, 315–330.CrossRef
34.
go back to reference Huysamen, K., de Looze, M., Bosch, T., Ortiz, J., Toxiri, S., & O’Sullivan, L. W. (2018). Assessment of an active industrial exoskeleton to aid dynamic lifting and lowering manual handling tasks. Applied Ergonomics, 68, 125–131.CrossRef Huysamen, K., de Looze, M., Bosch, T., Ortiz, J., Toxiri, S., & O’Sullivan, L. W. (2018). Assessment of an active industrial exoskeleton to aid dynamic lifting and lowering manual handling tasks. Applied Ergonomics, 68, 125–131.CrossRef
44.
go back to reference Picchiotti, M. T., Weston, E. B., Knapik, G. G., Dufour, J. S., & Marras, W. S. (2019). Impact of two postural assist exoskeletons on biomechanical loading of the lumbar spine. Applied Ergonomics, 75, 1–7.CrossRef Picchiotti, M. T., Weston, E. B., Knapik, G. G., Dufour, J. S., & Marras, W. S. (2019). Impact of two postural assist exoskeletons on biomechanical loading of the lumbar spine. Applied Ergonomics, 75, 1–7.CrossRef
61.
go back to reference Weston, E. B., Alizadeh, M., Knapik, G. G., Wang, X., & Marras, W. S. (2018). Biomechanical evaluation of exoskeleton use on loading of the lumbar spine. Applied Ergonomics, 68, 101–108.CrossRef Weston, E. B., Alizadeh, M., Knapik, G. G., Wang, X., & Marras, W. S. (2018). Biomechanical evaluation of exoskeleton use on loading of the lumbar spine. Applied Ergonomics, 68, 101–108.CrossRef
Metadata
Title
Design und Entwicklung
Authors
Victor Kaupe
Carsten Feldmann
Martin Lucas
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-658-32346-2_6