Skip to main content
Top
Published in: International Journal of Speech Technology 4/2019

12-10-2019

Designing of Gabor filters for spectro-temporal feature extraction to improve the performance of ASR system

Authors: Anirban Dutta, Gudmalwar Ashishkumar, Ch. V. Rama Rao

Published in: International Journal of Speech Technology | Issue 4/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Existing automatic speech recognition (ASR) system uses the spectral or temporal features of speech. The performance of such systems is still poor compared to the human perception of hearing, especially in noisy environments. This paper concentrates on the extraction of spectro-temporal features based on physiological and psychoacoustically inspired approaches. Here, two dimensional Gabor filters are used to estimate the spectro-temporal features from time–frequency representation of uttered speech signals. The Gabor filters are designed using the concept of constant Q factor. It is found that human perception system maintains approximately constant Q in its frequency response along the chain of its filter bank. Constant Q analysis ensures that the Gabor filters occupy a set of geometrically spaced spectral and temporal bins. Time–frequency representation of speech signal is a key ingredient for Gabor based feature extraction method. For time–frequency mapping, Gammatonegram is adopted instead of conventional spectrogram representations. The performance of the ASR system with the proposed feature set is experimentally validated using AURORA2 noisy digit database. Under clean training; the proposed features obtained a relative improvement of about 50% in word error rate (WER) compared to Mel frequency cepstral coefficients (MFCC) features. A relative improvement of 23% in WER is also obtained compared with that of existing spectro-temporal feature extraction methods. Further analysis is carried out on TIMIT corrupted with noise samples taken from the NOISEX-92 database. The experimental verification proves the robustness of proposed features in building a robust acoustic model for the ASR system.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Amrouche, A., Taleb-Ahmed, A., Rouvaen, J. M., & Yagoub, M. C. (2009). Improvement of the speech recognition in noisy environments using a nonparametric regression. International Journal of Parallel, Emergent and Distributed Systems, 24(1), 49–67.MathSciNetCrossRef Amrouche, A., Taleb-Ahmed, A., Rouvaen, J. M., & Yagoub, M. C. (2009). Improvement of the speech recognition in noisy environments using a nonparametric regression. International Journal of Parallel, Emergent and Distributed Systems, 24(1), 49–67.MathSciNetCrossRef
go back to reference Barker, J., Vincent, E., Ma, N., Christensen, H., & Green, P. (2013). The PASCAL CHiME speech separation and recognition challenge. Computer Speech and Language, 27(3), 621–633.CrossRef Barker, J., Vincent, E., Ma, N., Christensen, H., & Green, P. (2013). The PASCAL CHiME speech separation and recognition challenge. Computer Speech and Language, 27(3), 621–633.CrossRef
go back to reference Chi, T., Ru, P., & Shamma, S. A. (2005). Multiresolution spectrotemporal analysis of complex sounds. The Journal of the Acoustical Society of America, 118(2), 887–906.CrossRef Chi, T., Ru, P., & Shamma, S. A. (2005). Multiresolution spectrotemporal analysis of complex sounds. The Journal of the Acoustical Society of America, 118(2), 887–906.CrossRef
go back to reference Davis, S., & Mermelstein, P. (1980). Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences. IEEE Transactions on Acoustics, Speech, and Signal Processing, 28(4), 357–366.CrossRef Davis, S., & Mermelstein, P. (1980). Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences. IEEE Transactions on Acoustics, Speech, and Signal Processing, 28(4), 357–366.CrossRef
go back to reference Depireux, D. A., Simon, J. Z., Klein, D. J., & Shamma, S. A. (2001). Spectro-temporal response field characterization with dynamic ripples in ferret primary auditory cortex. Journal of Neurophysiology, 85(3), 1220–1234.CrossRef Depireux, D. A., Simon, J. Z., Klein, D. J., & Shamma, S. A. (2001). Spectro-temporal response field characterization with dynamic ripples in ferret primary auditory cortex. Journal of Neurophysiology, 85(3), 1220–1234.CrossRef
go back to reference Dörfler, M. (2001). Time–frequency analysis for music signals: A mathematical approach. Journal of New Music Research, 30(1), 3–12.CrossRef Dörfler, M. (2001). Time–frequency analysis for music signals: A mathematical approach. Journal of New Music Research, 30(1), 3–12.CrossRef
go back to reference Dubey, R. K., & Kumar, A. (2013). Non-intrusive speech quality assessment using several combinations of auditory features. International Journal of Speech Technology, 16(1), 89–101.CrossRef Dubey, R. K., & Kumar, A. (2013). Non-intrusive speech quality assessment using several combinations of auditory features. International Journal of Speech Technology, 16(1), 89–101.CrossRef
go back to reference Fartash, M., Setayeshi, S., & Razzazi, F. (2015). A noise robust speech features extraction approach in multidimensional cortical representation using multilinear principal component analysis. International Journal of Speech Technology, 18(3), 351–365.CrossRef Fartash, M., Setayeshi, S., & Razzazi, F. (2015). A noise robust speech features extraction approach in multidimensional cortical representation using multilinear principal component analysis. International Journal of Speech Technology, 18(3), 351–365.CrossRef
go back to reference Ganapathy, S., & Omar, M. (2014). Auditory motivated front-end for noisy speech using spectro-temporal modulation filtering. The Journal of the Acoustical Society of America, 136(5), EL343–EL349.CrossRef Ganapathy, S., & Omar, M. (2014). Auditory motivated front-end for noisy speech using spectro-temporal modulation filtering. The Journal of the Acoustical Society of America, 136(5), EL343–EL349.CrossRef
go back to reference Garofolo, J. S., Lamel, L. F., Fisher, W. M., Fiscus, J. G., & Pallett, D. S. (1993). DARPA TIMIT acoustic–phonetic continuous speech corpus CD-ROM. NIST speech disc 1-1.1. NASA STI/Recon technical report n 93. Garofolo, J. S., Lamel, L. F., Fisher, W. M., Fiscus, J. G., & Pallett, D. S. (1993). DARPA TIMIT acoustic–phonetic continuous speech corpus CD-ROM. NIST speech disc 1-1.1. NASA STI/Recon technical report n 93.
go back to reference Gautam, S., & Singh, L. (2017). Development of spectro-temporal features of speech in children. International Journal of Speech Technology, 20(3), 543–551.CrossRef Gautam, S., & Singh, L. (2017). Development of spectro-temporal features of speech in children. International Journal of Speech Technology, 20(3), 543–551.CrossRef
go back to reference Gold, B., Morgan, N., & Ellis, D. (2011). Speech and audio signal processing: Processing and perception of speech and music. New York: Wiley.CrossRef Gold, B., Morgan, N., & Ellis, D. (2011). Speech and audio signal processing: Processing and perception of speech and music. New York: Wiley.CrossRef
go back to reference Hermansky, H., & Morgan, N. (1994). Rasta processing of speech. IEEE Transactions on Speech and Audio Processing, 2(4), 578–589.CrossRef Hermansky, H., & Morgan, N. (1994). Rasta processing of speech. IEEE Transactions on Speech and Audio Processing, 2(4), 578–589.CrossRef
go back to reference Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, Ar, Jaitly, N., et al. (2012). Deep neural networks for acoustic modeling in speech recognition. IEEE Signal Processing Magazine, 29, 82–97.CrossRef Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, Ar, Jaitly, N., et al. (2012). Deep neural networks for acoustic modeling in speech recognition. IEEE Signal Processing Magazine, 29, 82–97.CrossRef
go back to reference Hirsch, H. G., & Pearce, D. (2000). The aurora experimental framework for the performance evaluation of speech recognition systems under noisy conditions. In: ASR2000-Automatic Speech Recognition: Challenges for the new Millennium ISCA Tutorial and Research Workshop (ITRW). Hirsch, H. G., & Pearce, D. (2000). The aurora experimental framework for the performance evaluation of speech recognition systems under noisy conditions. In: ASR2000-Automatic Speech Recognition: Challenges for the new Millennium ISCA Tutorial and Research Workshop (ITRW).
go back to reference Holighaus, N., Dörfler, M., Velasco, G. A., & Grill, T. (2013). A framework for invertible, real-time constant-Q transforms. IEEE Transactions on Audio, Speech, and Language Processing, 21(4), 775–785.CrossRef Holighaus, N., Dörfler, M., Velasco, G. A., & Grill, T. (2013). A framework for invertible, real-time constant-Q transforms. IEEE Transactions on Audio, Speech, and Language Processing, 21(4), 775–785.CrossRef
go back to reference Kanedera, N., Arai, T., Hermansky, H., & Pavel, M. (1999). On the relative importance of various components of the modulation spectrum for automatic speech recognition. Speech Communication, 28(1), 43–55.CrossRef Kanedera, N., Arai, T., Hermansky, H., & Pavel, M. (1999). On the relative importance of various components of the modulation spectrum for automatic speech recognition. Speech Communication, 28(1), 43–55.CrossRef
go back to reference Katsiamis, A. G., Drakakis, E. M., & Lyon, R. F. (2007). Practical gammatone-like filters for auditory processing. EURASIP Journal on Audio, Speech, and Music Processing, 2007(1), 063685. Katsiamis, A. G., Drakakis, E. M., & Lyon, R. F. (2007). Practical gammatone-like filters for auditory processing. EURASIP Journal on Audio, Speech, and Music Processing, 2007(1), 063685.
go back to reference Kim, C., & Stern, R. M. (2009). Feature extraction for robust speech recognition using a power-law nonlinearity and power-bias subtraction. In: Tenth annual conference of the International Speech Communication Association. Kim, C., & Stern, R. M. (2009). Feature extraction for robust speech recognition using a power-law nonlinearity and power-bias subtraction. In: Tenth annual conference of the International Speech Communication Association.
go back to reference Kim, C., & Stern, R. M. (2016). Power-normalized cepstral coefficients (PNCC) for robust speech recognition. IEEE/ACM Transactions on Audio, Speech and Language Processing, 24(7), 1315–1329.CrossRef Kim, C., & Stern, R. M. (2016). Power-normalized cepstral coefficients (PNCC) for robust speech recognition. IEEE/ACM Transactions on Audio, Speech and Language Processing, 24(7), 1315–1329.CrossRef
go back to reference Kleinschmidt, M. (2003). Localized spectro-temporal features for automatic speech recognition. In Eighth European conference on speech communication and technology. Kleinschmidt, M. (2003). Localized spectro-temporal features for automatic speech recognition. In Eighth European conference on speech communication and technology.
go back to reference Kleinschmidt, M., & Gelbart, D. (2002). Improving word accuracy with Gabor feature extraction. In Seventh international conference on spoken language processing. Kleinschmidt, M., & Gelbart, D. (2002). Improving word accuracy with Gabor feature extraction. In Seventh international conference on spoken language processing.
go back to reference Kovács, G., Tóth, L., & Van Compernolle, D. (2015). Selection and enhancement of Gabor filters for automatic speech recognition. International Journal of Speech Technology, 18(1), 1–16.CrossRef Kovács, G., Tóth, L., & Van Compernolle, D. (2015). Selection and enhancement of Gabor filters for automatic speech recognition. International Journal of Speech Technology, 18(1), 1–16.CrossRef
go back to reference Martinez, A. M. C., Moritz, N., & Meyer, B. T. (2014). Should deep neural nets have ears? The role of auditory features in deep learning approaches. In Fifteenth annual conference of the International Speech Communication Association. Martinez, A. M. C., Moritz, N., & Meyer, B. T. (2014). Should deep neural nets have ears? The role of auditory features in deep learning approaches. In Fifteenth annual conference of the International Speech Communication Association.
go back to reference Martinez, A. M. C., Mallidi, S. H., & Meyer, B. T. (2017). On the relevance of auditory-based Gabor features for deep learning in robust speech recognition. Computer Speech and Language, 45, 21–38.CrossRef Martinez, A. M. C., Mallidi, S. H., & Meyer, B. T. (2017). On the relevance of auditory-based Gabor features for deep learning in robust speech recognition. Computer Speech and Language, 45, 21–38.CrossRef
go back to reference Mattys, S. L., Davis, M. H., Bradlow, A. R., & Scott, S. K. (2012). Speech recognition in adverse conditions: A review. Language and Cognitive Processes, 27(7–8), 953–978.CrossRef Mattys, S. L., Davis, M. H., Bradlow, A. R., & Scott, S. K. (2012). Speech recognition in adverse conditions: A review. Language and Cognitive Processes, 27(7–8), 953–978.CrossRef
go back to reference Mesgarani, N., Slaney, M., & Shamma, S. A. (2006). Discrimination of speech from nonspeech based on multiscale spectro-temporal modulations. IEEE Transactions on Audio, Speech, and Language Processing, 14(3), 920–930.CrossRef Mesgarani, N., Slaney, M., & Shamma, S. A. (2006). Discrimination of speech from nonspeech based on multiscale spectro-temporal modulations. IEEE Transactions on Audio, Speech, and Language Processing, 14(3), 920–930.CrossRef
go back to reference Mesgarani, N., David, S., & Shamma, S. (2007). Representation of phonemes in primary auditory cortex: How the brain analyzes speech. In 2007 IEEE international conference on acoustics, speech and signal processing—ICASSP’07 (Vol. 4, pp. IV-765). IEEE. Mesgarani, N., David, S., & Shamma, S. (2007). Representation of phonemes in primary auditory cortex: How the brain analyzes speech. In 2007 IEEE international conference on acoustics, speech and signal processing—ICASSP’07 (Vol. 4, pp. IV-765). IEEE.
go back to reference Mesgarani, N., Thomas, S., & Hermansky, H. (2010). A multistream multiresolution framework for phoneme recognition. In Eleventh annual conference of the International Speech Communication Association. Mesgarani, N., Thomas, S., & Hermansky, H. (2010). A multistream multiresolution framework for phoneme recognition. In Eleventh annual conference of the International Speech Communication Association.
go back to reference Meyer, B. T., & Kollmeier, B. (2011). Robustness of spectro-temporal features against intrinsic and extrinsic variations in automatic speech recognition. Speech Communication,53(5), 753–767. Meyer, B. T., & Kollmeier, B. (2011). Robustness of spectro-temporal features against intrinsic and extrinsic variations in automatic speech recognition. Speech Communication,53(5), 753–767.
go back to reference Mohamed, Ar., Sainath, T. N., Dahl, G. E., Ramabhadran, B., Hinton, G. E., Picheny, M. A., et al. (2011). Deep belief networks using discriminative features for phone recognition. In ICASSP (pp. 5060–5063). Mohamed, Ar., Sainath, T. N., Dahl, G. E., Ramabhadran, B., Hinton, G. E., Picheny, M. A., et al. (2011). Deep belief networks using discriminative features for phone recognition. In ICASSP (pp. 5060–5063).
go back to reference Norris, D., McQueen, J. M., & Cutler, A. (2016). Prediction, Bayesian inference and feedback in speech recognition. Language, Cognition and Neuroscience, 31(1), 4–18.CrossRef Norris, D., McQueen, J. M., & Cutler, A. (2016). Prediction, Bayesian inference and feedback in speech recognition. Language, Cognition and Neuroscience, 31(1), 4–18.CrossRef
go back to reference Patel, H., Thakkar, A., Pandya, M., & Makwana, K. (2018). Neural network with deep learning architectures. Journal of Information and Optimization Sciences, 39(1), 31–38.MathSciNetCrossRef Patel, H., Thakkar, A., Pandya, M., & Makwana, K. (2018). Neural network with deep learning architectures. Journal of Information and Optimization Sciences, 39(1), 31–38.MathSciNetCrossRef
go back to reference Patterson, R., et al. (1992). Complex sounds and auditory images. In Y. Cazals, et al. (Eds.), Auditory physiology and perception. Oxford: Pergamon Press. Patterson, R., et al. (1992). Complex sounds and auditory images. In Y. Cazals, et al. (Eds.), Auditory physiology and perception. Oxford: Pergamon Press.
go back to reference Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., et al. (2011). The Kaldi speech recognition toolkit. Technical report. IEEE Signal Processing Society. Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., et al. (2011). The Kaldi speech recognition toolkit. Technical report. IEEE Signal Processing Society.
go back to reference Povey, D., Zhang, X., & Khudanpur, S. (2014). Parallel training of deep neural networks with natural gradient and parameter averaging. arXiv preprint arXiv:14107455. Povey, D., Zhang, X., & Khudanpur, S. (2014). Parallel training of deep neural networks with natural gradient and parameter averaging. arXiv preprint arXiv:​14107455.
go back to reference Qiu, A., Schreiner, C. E., & Escabí, M. A. (2003). Gabor analysis of auditory midbrain receptive fields: Spectro-temporal and binaural composition. Journal of Neurophysiology, 90(1), 456–476.CrossRef Qiu, A., Schreiner, C. E., & Escabí, M. A. (2003). Gabor analysis of auditory midbrain receptive fields: Spectro-temporal and binaural composition. Journal of Neurophysiology, 90(1), 456–476.CrossRef
go back to reference Rath, S. P., Povey, D., Veselỳ, K., & Cernockỳ, J. (2013). Improved feature processing for deep neural networks. In Interspeech (pp. 109–113). Rath, S. P., Povey, D., Veselỳ, K., & Cernockỳ, J. (2013). Improved feature processing for deep neural networks. In Interspeech (pp. 109–113).
go back to reference Revathi, A., Sasikaladevi, N., Nagakrishnan, R., & Jeyalakshmi, C. (2018). Robust emotion recognition from speech: Gamma tone features and models. International Journal of Speech Technology, 21(3), 723–739.CrossRef Revathi, A., Sasikaladevi, N., Nagakrishnan, R., & Jeyalakshmi, C. (2018). Robust emotion recognition from speech: Gamma tone features and models. International Journal of Speech Technology, 21(3), 723–739.CrossRef
go back to reference Schädler, M. R., & Kollmeier, B. (2015). Separable spectro-temporal Gabor filter bank features: Reducing the complexity of robust features for automatic speech recognition. The Journal of the Acoustical Society of America, 137(4), 2047–2059.CrossRef Schädler, M. R., & Kollmeier, B. (2015). Separable spectro-temporal Gabor filter bank features: Reducing the complexity of robust features for automatic speech recognition. The Journal of the Acoustical Society of America, 137(4), 2047–2059.CrossRef
go back to reference Schädler, M. R., Meyer, B. T., & Kollmeier, B. (2012). Spectro-temporal modulation subspace-spanning filter bank features for robust automatic speech recognition. The Journal of the Acoustical Society of America, 131(5), 4134–4151.CrossRef Schädler, M. R., Meyer, B. T., & Kollmeier, B. (2012). Spectro-temporal modulation subspace-spanning filter bank features for robust automatic speech recognition. The Journal of the Acoustical Society of America, 131(5), 4134–4151.CrossRef
go back to reference Schröder, J., Goetze, S., & Anemüller, J. (2015). Spectro-temporal Gabor filterbank features for acoustic event detection. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 23(12), 2198–2208.CrossRef Schröder, J., Goetze, S., & Anemüller, J. (2015). Spectro-temporal Gabor filterbank features for acoustic event detection. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 23(12), 2198–2208.CrossRef
go back to reference Shokouhi, N., & Hansen, J. H. (2017). Teager–Kaiser energy operators for overlapped speech detection. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 25(5), 1035–1047.CrossRef Shokouhi, N., & Hansen, J. H. (2017). Teager–Kaiser energy operators for overlapped speech detection. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 25(5), 1035–1047.CrossRef
go back to reference Slaney, M., et al. (1993). An efficient implementation of the Patterson–Holdsworth auditory filter bank. Technical report, 35(8). Apple Computer, Perception Group. Slaney, M., et al. (1993). An efficient implementation of the Patterson–Holdsworth auditory filter bank. Technical report, 35(8). Apple Computer, Perception Group.
go back to reference Spille, C., Kollmeier, B., & Meyer, B. T. (2017). Combining binaural and cortical features for robust speech recognition. IEEE/ACM Transactions on Audio, Speech and Language Processing, 25(4), 756–767.CrossRef Spille, C., Kollmeier, B., & Meyer, B. T. (2017). Combining binaural and cortical features for robust speech recognition. IEEE/ACM Transactions on Audio, Speech and Language Processing, 25(4), 756–767.CrossRef
go back to reference Todisco, M., Delgado, H., & Evans, N. (2016). A new feature for automatic speaker verification anti-spoofing: Constant Q cepstral coefficients. In Speaker Odyssey workshop, Bilbao, Spain (Vol. 25, pp. 249–252). Todisco, M., Delgado, H., & Evans, N. (2016). A new feature for automatic speaker verification anti-spoofing: Constant Q cepstral coefficients. In Speaker Odyssey workshop, Bilbao, Spain (Vol. 25, pp. 249–252).
go back to reference Valero, X., & Alias, F. (2012). Gammatone cepstral coefficients: Biologically inspired features for non-speech audio classification. IEEE Transactions on Multimedia, 14(6), 1684–1689.CrossRef Valero, X., & Alias, F. (2012). Gammatone cepstral coefficients: Biologically inspired features for non-speech audio classification. IEEE Transactions on Multimedia, 14(6), 1684–1689.CrossRef
go back to reference Varga, A., & Steeneken, H. J. (1993). Assessment for automatic speech recognition: II. NOISEX-92: A database and an experiment to study the effect of additive noise on speech recognition systems. Speech Communication, 12(3), 247–251.CrossRef Varga, A., & Steeneken, H. J. (1993). Assessment for automatic speech recognition: II. NOISEX-92: A database and an experiment to study the effect of additive noise on speech recognition systems. Speech Communication, 12(3), 247–251.CrossRef
go back to reference Zhang, X., Trmal, J., Povey, D., & Khudanpur, S. (2014). Improving deep neural network acoustic models using generalized maxout networks. In 2014 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 215–219). IEEE. Zhang, X., Trmal, J., Povey, D., & Khudanpur, S. (2014). Improving deep neural network acoustic models using generalized maxout networks. In 2014 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 215–219). IEEE.
go back to reference Zhao, S. Y., Ravuri, S., & Morgan, N. (2009). Multi-stream to many-stream: Using spectro-temporal features for ASR. In: Tenth annual conference of the International Speech Communication Association. Zhao, S. Y., Ravuri, S., & Morgan, N. (2009). Multi-stream to many-stream: Using spectro-temporal features for ASR. In: Tenth annual conference of the International Speech Communication Association.
Metadata
Title
Designing of Gabor filters for spectro-temporal feature extraction to improve the performance of ASR system
Authors
Anirban Dutta
Gudmalwar Ashishkumar
Ch. V. Rama Rao
Publication date
12-10-2019
Publisher
Springer US
Published in
International Journal of Speech Technology / Issue 4/2019
Print ISSN: 1381-2416
Electronic ISSN: 1572-8110
DOI
https://doi.org/10.1007/s10772-019-09650-5

Other articles of this Issue 4/2019

International Journal of Speech Technology 4/2019 Go to the issue