Skip to main content
main-content
Top

Hint

Swipe to navigate through the chapters of this book

2019 | OriginalPaper | Chapter

Detecting Tampered Videos with Multimedia Forensics and Deep Learning

Authors: Markos Zampoglou, Foteini Markatopoulou, Gregoire Mercier, Despoina Touska, Evlampios Apostolidis, Symeon Papadopoulos, Roger Cozien, Ioannis Patras, Vasileios Mezaris, Ioannis Kompatsiaris

Published in: MultiMedia Modeling

Publisher: Springer International Publishing

share
SHARE

Abstract

User-Generated Content (UGC) has become an integral part of the news reporting cycle. As a result, the need to verify videos collected from social media and Web sources is becoming increasingly important for news organisations. While video verification is attracting a lot of attention, there has been limited effort so far in applying video forensics to real-world data. In this work we present an approach for automatic video manipulation detection inspired by manual verification approaches. In a typical manual verification setting, video filter outputs are visually interpreted by human experts. We use two such forensics filters designed for manual verification, one based on Discrete Cosine Transform (DCT) coefficients and a second based on video requantization errors, and combine them with Deep Convolutional Neural Networks (CNN) designed for image classification. We compare the performance of the proposed approach to other works from the state of the art, and discover that, while competing approaches perform better when trained with videos from the same dataset, one of the proposed filters demonstrates superior performance in cross-dataset settings. We discuss the implications of our work and the limitations of the current experimental setup, and propose directions for future research in this area.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 15 Tage kostenlos.

Footnotes
1
While not all maps are technically the result of filtering, the term filters is widely used in the market and will also be used here.
 
Literature
1.
go back to reference Chen, S., Tan, S., Li, B., Huang, J.: Automatic detection of object-based forgery in advanced video. IEEE Trans. on Circ. Syst. Video Technol. 26(11), 2138–2151 (2016) CrossRef Chen, S., Tan, S., Li, B., Huang, J.: Automatic detection of object-based forgery in advanced video. IEEE Trans. on Circ. Syst. Video Technol. 26(11), 2138–2151 (2016) CrossRef
2.
go back to reference D’Amiano, L., Cozzolino, D., Poggi, G., Verdoliva, L.: Video forgery detection and localization based on 3D patchmatch. In: IEEE International Conference on Multimedia Expo Workshop (ICMEW) (2015) D’Amiano, L., Cozzolino, D., Poggi, G., Verdoliva, L.: Video forgery detection and localization based on 3D patchmatch. In: IEEE International Conference on Multimedia Expo Workshop (ICMEW) (2015)
3.
go back to reference Dong, Q., Yang, G., Zhu, N.: A MCEA based passive forensics scheme for detecting frame based video tampering. Digit. Investig. 9, 151–159 (2012) CrossRef Dong, Q., Yang, G., Zhu, N.: A MCEA based passive forensics scheme for detecting frame based video tampering. Digit. Investig. 9, 151–159 (2012) CrossRef
4.
go back to reference Fridrich, J., Kodovsky, J.: Rich models for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 7(3), 868–882 (2012) CrossRef Fridrich, J., Kodovsky, J.: Rich models for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 7(3), 868–882 (2012) CrossRef
5.
go back to reference He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
6.
go back to reference Labartino, D., Bianchi, T., Rosa, A.D., Fontani, M., Vazquez-Padin, D., Piva, A.: Localization of forgeries in MPEG-2 video through GOP size and DQ analysis. In: IEEE International Workshop on Multimedia and Signal Processing, pp. 494–499 (2013) Labartino, D., Bianchi, T., Rosa, A.D., Fontani, M., Vazquez-Padin, D., Piva, A.: Localization of forgeries in MPEG-2 video through GOP size and DQ analysis. In: IEEE International Workshop on Multimedia and Signal Processing, pp. 494–499 (2013)
7.
go back to reference Li, L., Wang, X., Wang, G., Hu, G.: Detecting removed object from video with stationary background. In: Proceedings of the 11th International Conference on Digital Forensics and Watermarking (WDW), pp. 242–252 (2013) CrossRef Li, L., Wang, X., Wang, G., Hu, G.: Detecting removed object from video with stationary background. In: Proceedings of the 11th International Conference on Digital Forensics and Watermarking (WDW), pp. 242–252 (2013) CrossRef
8.
go back to reference Lin, C.S., Tsay, J.J.: A passive approach for effective detection and localization of region-level video forgery with spatio-temporal coherence analysis. Digit. Investig. 11(2), 120–140 (2014) CrossRef Lin, C.S., Tsay, J.J.: A passive approach for effective detection and localization of region-level video forgery with spatio-temporal coherence analysis. Digit. Investig. 11(2), 120–140 (2014) CrossRef
9.
go back to reference Pandey, R., Singh, S., Shukla, K.: Passive copy-move forgery detection in videos. In: IEEE International Conference on Computer and Communications and Technology (ICCCT), pp. 301–306 (2014) Pandey, R., Singh, S., Shukla, K.: Passive copy-move forgery detection in videos. In: IEEE International Conference on Computer and Communications and Technology (ICCCT), pp. 301–306 (2014)
10.
go back to reference Papadopoulou, O., Zampoglou, M., Papadopoulos, S., Kompatsiaris, Y., Teyssou, D.: Invid Fake Video Corpus v2.0 (Version 2.0). Dataset on Zenodo (2018) Papadopoulou, O., Zampoglou, M., Papadopoulos, S., Kompatsiaris, Y., Teyssou, D.: Invid Fake Video Corpus v2.0 (Version 2.0). Dataset on Zenodo (2018)
12.
go back to reference Piva, A.: An overview on image forensics. ISRN Sig. Process. 2013, 22 p. (2013). Article ID 496701 Piva, A.: An overview on image forensics. ISRN Sig. Process. 2013, 22 p. (2013). Article ID 496701
13.
go back to reference Rössler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., Nießner, M.: FaceForensics: a large-scale video dataset for forgery detection in human faces. arXiv preprint arXiv:​1803.​09179 (2018) Rössler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., Nießner, M.: FaceForensics: a large-scale video dataset for forgery detection in human faces. arXiv preprint arXiv:​1803.​09179 (2018)
14.
go back to reference Sitara, K., Mehtre, B.M.: Digital video tampering detection: an overview of passive techniques. Digit. Investig. 18, 8–22 (2016) CrossRef Sitara, K., Mehtre, B.M.: Digital video tampering detection: an overview of passive techniques. Digit. Investig. 18, 8–22 (2016) CrossRef
15.
go back to reference Su, L., Huang, T., Yang, J.: A video forgery detection algorithm based on compressive sensing. Multimedia Tools Appl. 74, 6641–6656 (2015) CrossRef Su, L., Huang, T., Yang, J.: A video forgery detection algorithm based on compressive sensing. Multimedia Tools Appl. 74, 6641–6656 (2015) CrossRef
16.
go back to reference Su, Y., Xu, J.: Detection of double compression in MPEG-2 videos. In: IEEE 2nd International Workshop on Intelligent Systems and Application (ISA) (2010) Su, Y., Xu, J.: Detection of double compression in MPEG-2 videos. In: IEEE 2nd International Workshop on Intelligent Systems and Application (ISA) (2010)
17.
go back to reference Subramanyam, A., Emmanuel, S.: Video forgery detection using HOG features and compression properties. In: IEEE 14th International Workshop on Multimedia and Signal Processing (MMSP), pp. 89–94 (2012) Subramanyam, A., Emmanuel, S.: Video forgery detection using HOG features and compression properties. In: IEEE 14th International Workshop on Multimedia and Signal Processing (MMSP), pp. 89–94 (2012)
18.
go back to reference Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015) Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)
19.
go back to reference Wang, W., Farid, H.: Exposing digital forgeries in interlaced and deinterlaced video. IEEE Trans. Inf. Forensics Secur. 2(3), 438–449 (2007) CrossRef Wang, W., Farid, H.: Exposing digital forgeries in interlaced and deinterlaced video. IEEE Trans. Inf. Forensics Secur. 2(3), 438–449 (2007) CrossRef
20.
go back to reference Wu, Y., Jiang, X., Sun, T., Wang, W.: Exposing video inter-frame forgery based on velocity field consistency. In: ICASSP (2014) Wu, Y., Jiang, X., Sun, T., Wang, W.: Exposing video inter-frame forgery based on velocity field consistency. In: ICASSP (2014)
21.
go back to reference Xu, J., Su, Y., Liu, Q.: Detection of double MPEG-2 compression based on distribution of DCT coefficients. Int. J. Pattern Recogn. AI 27(1), 1354001 (2013) MathSciNetCrossRef Xu, J., Su, Y., Liu, Q.: Detection of double MPEG-2 compression based on distribution of DCT coefficients. Int. J. Pattern Recogn. AI 27(1), 1354001 (2013) MathSciNetCrossRef
22.
go back to reference Yao, Y., Shi, Y., Weng, S., Guan, B.: Deep learning for detection of object-based forgery in advanced video. Symmetry 10(1), 3 (2017) CrossRef Yao, Y., Shi, Y., Weng, S., Guan, B.: Deep learning for detection of object-based forgery in advanced video. Symmetry 10(1), 3 (2017) CrossRef
23.
go back to reference Zampoglou, M., Papadopoulos, S., Kompatsiaris, Y.: Large-scale evaluation of splicing localization algorithms for web images. Multimedia Tools Appl. 76(4), 4801–4834 (2017) CrossRef Zampoglou, M., Papadopoulos, S., Kompatsiaris, Y.: Large-scale evaluation of splicing localization algorithms for web images. Multimedia Tools Appl. 76(4), 4801–4834 (2017) CrossRef
24.
go back to reference Zhang, Z., Hou, J., Ma, Q., Li, Z.: Efficient video frame insertion and deletion detection based on inconsistency of correlations between local binary pattern coded frames. Secur. Commun. Netw. 8(2), 311–320 (2015) CrossRef Zhang, Z., Hou, J., Ma, Q., Li, Z.: Efficient video frame insertion and deletion detection based on inconsistency of correlations between local binary pattern coded frames. Secur. Commun. Netw. 8(2), 311–320 (2015) CrossRef
Metadata
Title
Detecting Tampered Videos with Multimedia Forensics and Deep Learning
Authors
Markos Zampoglou
Foteini Markatopoulou
Gregoire Mercier
Despoina Touska
Evlampios Apostolidis
Symeon Papadopoulos
Roger Cozien
Ioannis Patras
Vasileios Mezaris
Ioannis Kompatsiaris
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-05710-7_31