Skip to main content
Top
Published in: Wireless Personal Communications 1/2022

28-09-2021

Detection and Multi-Class Classification of Intrusion in Software Defined Networks Using Stacked Auto-Encoders and CICIDS2017 Dataset

Authors: Padideh Choobdar, Marjan Naderan, Mahmood Naderan

Published in: Wireless Personal Communications | Issue 1/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Software Defined Networks (SDNs) is an emerging concept in network architectures, which divides the network operations into two, control and data, layers. In this concept, control and management operations are moved from the network devices to the controller and inside the control plane. This separation makes it possible to incorporate network devices for different applications, while on the other hand leads to vulnerabilities in the network. In fact, the controller becomes the bottleneck of the network, and it is vulnerable to intrusions. Various approaches have been proposed to detect intrusion in these networks, which among them using deep learning methods has gained the majority of attention in the past decade. In this paper, an intrusion detection system based on the SDN model is presented which is executed as an application module in the controller. The proposed system consists of three phases: in the first phase, for pre-training, sparse stacked auto-encoders are incorporated which learn the features in an unsupervised manner. In the second phase, to train the system, the SoftMax classifier is used and in the third phase, system parameters are optimized. Performance of the proposed system is evaluated according to two datasets, namely NSL-KDD and CICIDS2017, for classification of attacks. To implement the proposed method, the Mininet software and Keras framework, which is based on Tensorflow, are incorporated. The average accuracy in detection and classification of attacks using the proposed method is 98.5%, which is promising in comparison with previous methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Anan, M., Al-Fuqaha, A., Nasser, N., Mu, T. Y., & Bustam, H. (2016). Empowering networking research and experimentation through software-defined networking. Journal of Network and Computer Applications, 70, 140–155.CrossRef Anan, M., Al-Fuqaha, A., Nasser, N., Mu, T. Y., & Bustam, H. (2016). Empowering networking research and experimentation through software-defined networking. Journal of Network and Computer Applications, 70, 140–155.CrossRef
2.
go back to reference Jarraya, Y., Madi, T., & Debbabi, M. (2014). A survey and a layered taxonomy of software-defined networking. IEEE Communications Surveys & Tutorials, 16(4), 1955–1980.CrossRef Jarraya, Y., Madi, T., & Debbabi, M. (2014). A survey and a layered taxonomy of software-defined networking. IEEE Communications Surveys & Tutorials, 16(4), 1955–1980.CrossRef
3.
go back to reference Astuto, B. N., Mendonca, M., Nguyen, X. N., Obraczka, K., & Turletti, T. (2014). A survey of software-defined networking: Past, present, and future of programmable networks. IEEE Communications Surveys & Tutorials, 16, 1617–1634.CrossRef Astuto, B. N., Mendonca, M., Nguyen, X. N., Obraczka, K., & Turletti, T. (2014). A survey of software-defined networking: Past, present, and future of programmable networks. IEEE Communications Surveys & Tutorials, 16, 1617–1634.CrossRef
4.
go back to reference Giotis, K., Argyropoulos, C., Androulidakis, G., Kalogeras, D., & Maglaris, V. (2014). Combining OpenFlow and sFlow for an effective and scalable anomaly detection and mitigation mechanism on SDN environments. Computer Networks, 62, 122–136.CrossRef Giotis, K., Argyropoulos, C., Androulidakis, G., Kalogeras, D., & Maglaris, V. (2014). Combining OpenFlow and sFlow for an effective and scalable anomaly detection and mitigation mechanism on SDN environments. Computer Networks, 62, 122–136.CrossRef
5.
go back to reference Kreutz, D., Ramos, F. M. V., & Veríssimo, P. (2013). Towards secure and dependable software- defined networks. University of Lisbon.CrossRef Kreutz, D., Ramos, F. M. V., & Veríssimo, P. (2013). Towards secure and dependable software- defined networks. University of Lisbon.CrossRef
6.
go back to reference Bawany, N. Z., Shamsi, J. A., & Salah, K. (2017). DDoS attack detection and mitigation using SDN: Methods, practices, and solutions. Arabian Journal for Science and Engineering, 42(2), 425–441.CrossRef Bawany, N. Z., Shamsi, J. A., & Salah, K. (2017). DDoS attack detection and mitigation using SDN: Methods, practices, and solutions. Arabian Journal for Science and Engineering, 42(2), 425–441.CrossRef
7.
go back to reference Akhunzada, A., Ahmed, E., Gani, A., Khan, M. K., Imran, M., & Guizani, S. (2015). Securing software defined networks: Taxonomy, requirements, and open issues. IEEE Communications Magazine, 53(4), 36–44.CrossRef Akhunzada, A., Ahmed, E., Gani, A., Khan, M. K., Imran, M., & Guizani, S. (2015). Securing software defined networks: Taxonomy, requirements, and open issues. IEEE Communications Magazine, 53(4), 36–44.CrossRef
8.
go back to reference Yan, Q., Yu, F. R., Gong, Q., & Li, J. (2016). Software-defined networking (SDN) and distributed denial of service (DDOS) attacks in cloud computing environments: A survey, some research issues, and challenges. IEEE Communications Surveys & Tutorials, 18(1), 602–622.CrossRef Yan, Q., Yu, F. R., Gong, Q., & Li, J. (2016). Software-defined networking (SDN) and distributed denial of service (DDOS) attacks in cloud computing environments: A survey, some research issues, and challenges. IEEE Communications Surveys & Tutorials, 18(1), 602–622.CrossRef
9.
go back to reference Hande, Y., Muddana, A., & Darade, S. (2017). Software-defined network-based intrusion detection system. Innovations in Electronics and Communication Engineering, Lecture notes in Networks and Systems, 7, 535–543.CrossRef Hande, Y., Muddana, A., & Darade, S. (2017). Software-defined network-based intrusion detection system. Innovations in Electronics and Communication Engineering, Lecture notes in Networks and Systems, 7, 535–543.CrossRef
10.
go back to reference Ma, T., Wang, F., Cheng, J., Yu, Y., & Chen, X. (2016). A hybrid spectral clustering and deep neural network ensemble algorithm for intrusion detection in sensor networks. Sensors, 16(10), 1701.CrossRef Ma, T., Wang, F., Cheng, J., Yu, Y., & Chen, X. (2016). A hybrid spectral clustering and deep neural network ensemble algorithm for intrusion detection in sensor networks. Sensors, 16(10), 1701.CrossRef
11.
go back to reference Amine Ferrag, M., Maglaras, L., Moschoyiannis, S., & Janicke, H. (2020). Deep learning for cyber security intrusion detection: Approaches, datasets, and comparative study. Journal of Information Security and Applications, 50, 102419.CrossRef Amine Ferrag, M., Maglaras, L., Moschoyiannis, S., & Janicke, H. (2020). Deep learning for cyber security intrusion detection: Approaches, datasets, and comparative study. Journal of Information Security and Applications, 50, 102419.CrossRef
12.
go back to reference Vani, R. (2017). Towards efficient intrusion detection using deep learning techniques: A review. Int. J. Adv. Res. Comput. Commun. Eng., 6(10), 375–384. Vani, R. (2017). Towards efficient intrusion detection using deep learning techniques: A review. Int. J. Adv. Res. Comput. Commun. Eng., 6(10), 375–384.
13.
go back to reference Kokila, R. T., Selvi, S. T., & Govindarajan, K. (2014, December). DDoS detection and analysis in SDN-based environment using support vector machine classifier. In 2014 6th international conference on advanced computing (ICoAC) (pp. 205-210). Kokila, R. T., Selvi, S. T., & Govindarajan, K. (2014, December). DDoS detection and analysis in SDN-based environment using support vector machine classifier. In 2014 6th international conference on advanced computing (ICoAC) (pp. 205-210).
14.
go back to reference Singh, J., & Nene, M. J. (2013). A survey on machine learning techniques for intrusion detection systems. International Journal of Advanced Research in Computer and Communication Engineering, 2(11), 4349–4355. Singh, J., & Nene, M. J. (2013). A survey on machine learning techniques for intrusion detection systems. International Journal of Advanced Research in Computer and Communication Engineering, 2(11), 4349–4355.
15.
go back to reference Ashraf, J., & Latif, S. (2014, November). Handling intrusion and DDoS attacks in Software Defined Networks using machine learning techniques. In 2014 National software engineering conference (pp. 55-60). Ashraf, J., & Latif, S. (2014, November). Handling intrusion and DDoS attacks in Software Defined Networks using machine learning techniques. In 2014 National software engineering conference (pp. 55-60).
16.
go back to reference Mousavi, S. M., & St-Hilaire, M. (2017). Early detection of DDoS attacks against software defined network controllers. Journal of Network and Systems Management, 26, 1–19. Mousavi, S. M., & St-Hilaire, M. (2017). Early detection of DDoS attacks against software defined network controllers. Journal of Network and Systems Management, 26, 1–19.
17.
go back to reference David, J., & Thomas, C. (2015). DDoS attack detection using fast entropy approach on flow- based network traffic. Procedia Computer Science, 50, 30–36.CrossRef David, J., & Thomas, C. (2015). DDoS attack detection using fast entropy approach on flow- based network traffic. Procedia Computer Science, 50, 30–36.CrossRef
18.
go back to reference Wang, R., Jia, Z., & Ju, L. (2015). An entropy-based distributed DDoS detection mechanism in software-defined networking,” Proc. - 14th IEEE Int. Conf. Trust. Secur. Priv. Comput. Commun. Trust. 2015, vol. 1, pp. 310–317. Wang, R., Jia, Z., & Ju, L. (2015). An entropy-based distributed DDoS detection mechanism in software-defined networking,” Proc. - 14th IEEE Int. Conf. Trust. Secur. Priv. Comput. Commun. Trust. 2015, vol. 1, pp. 310–317.
19.
go back to reference Dong, P., Du, X., Zhang, H., & Xu, T. (2016). A detection method for a novel DDoS attack against SDN controllers by vast new low-traffic flows. In 2016 IEEE international conference on communications (ICC) (pp. 1-6). Dong, P., Du, X., Zhang, H., & Xu, T. (2016). A detection method for a novel DDoS attack against SDN controllers by vast new low-traffic flows. In 2016 IEEE international conference on communications (ICC) (pp. 1-6).
20.
go back to reference Jankowski, D., & Amanowicz, M. (2016). On efficiency of selected machine learning algorithms for intrusion detection in software defined networks. International Journal of Electronics and Telecommunications, 62(3), 247–252.CrossRef Jankowski, D., & Amanowicz, M. (2016). On efficiency of selected machine learning algorithms for intrusion detection in software defined networks. International Journal of Electronics and Telecommunications, 62(3), 247–252.CrossRef
21.
go back to reference Jankowski, D., & Amanowicz, M. (2016, May). A method of network workload generation for evaluation of intrusion detection systems in SDN environment. In 2016 International Conference on Military Communications and Information Systems (ICMCIS) (pp. 1-7). Jankowski, D., & Amanowicz, M. (2016, May). A method of network workload generation for evaluation of intrusion detection systems in SDN environment. In 2016 International Conference on Military Communications and Information Systems (ICMCIS) (pp. 1-7).
22.
go back to reference Braga, R., Mota, E., & Passito, A. (2010, October). Lightweight DDoS flooding attack detection using NOX/OpenFlow. In IEEE Local Computer Network Conference (pp. 408-415). Braga, R., Mota, E., & Passito, A. (2010, October). Lightweight DDoS flooding attack detection using NOX/OpenFlow. In IEEE Local Computer Network Conference (pp. 408-415).
23.
go back to reference Abubakar, A., & Pranggono, B. (2017, September). Machine learning based intrusion detection system for software defined networks. In 2017 Eighth international conference on emerging security technologies (EST) (pp. 138-143). Abubakar, A., & Pranggono, B. (2017, September). Machine learning based intrusion detection system for software defined networks. In 2017 Eighth international conference on emerging security technologies (EST) (pp. 138-143).
24.
go back to reference Nanda, S., Zafari, F., DeCusatis, C., Wedaa, E., & Yang, B. (2016). Predicting network attack patterns in SDN using machine learning approach. In 2016 IEEE Conference on Network Function Virtualization and Software Defined Networks, Palo Alto, CA, USA, 2016. Nanda, S., Zafari, F., DeCusatis, C., Wedaa, E., & Yang, B. (2016). Predicting network attack patterns in SDN using machine learning approach. In 2016 IEEE Conference on Network Function Virtualization and Software Defined Networks, Palo Alto, CA, USA, 2016.
25.
go back to reference Dotcenko, S., Vladyko, A., & Letenko, I. (2014). A fuzzy logic-based information security management for software-defined networks. In 16th International Conference on Advanced Communication Technology (pp. 167-171) Dotcenko, S., Vladyko, A., & Letenko, I. (2014). A fuzzy logic-based information security management for software-defined networks. In 16th International Conference on Advanced Communication Technology (pp. 167-171)
26.
go back to reference Tang, T. A., Mhamdi, L., McLernon, D., Zaidi, S. A. R., & Ghogho, M. (2016). Deep learning approach for network intrusion detection in software defined networking. In 2016 international conference on wireless networks and mobile communications (WINCOM) (pp. 258-263). Tang, T. A., Mhamdi, L., McLernon, D., Zaidi, S. A. R., & Ghogho, M. (2016). Deep learning approach for network intrusion detection in software defined networking. In 2016 international conference on wireless networks and mobile communications (WINCOM) (pp. 258-263).
27.
go back to reference Hodo, E., Bellekens, X., Hamilton, A., Tachtatzis, C., and Atkinson, R. (2017) “Shallow and Deep Networks Intrusion Detection System: A Taxonomy and Survey,” arXiv: 1701.02145, pp. 1–43. Hodo, E., Bellekens, X., Hamilton, A., Tachtatzis, C., and Atkinson, R. (2017) “Shallow and Deep Networks Intrusion Detection System: A Taxonomy and Survey,” arXiv: 1701.02145, pp. 1–43.
28.
go back to reference Javaid, A., Niyaz, Q., Sun, W., and Alam, M. (2016). “A Deep Learning Approach for Network Intrusion Detection System,” Proc. 9th EAI Int. Conf. Bio-inspired Inf. Commun. Technol. (formerly BIONETICS). Javaid, A., Niyaz, Q., Sun, W., and Alam, M. (2016). “A Deep Learning Approach for Network Intrusion Detection System,” Proc. 9th EAI Int. Conf. Bio-inspired Inf. Commun. Technol. (formerly BIONETICS).
29.
go back to reference Kwon, D., Kim, H., Kim, J., Suh, S. C., Kim, I., and Kim, K. J. (2017). “A survey of deep learning-based network anomaly detection,” Cluster Comput., pp. 1–13. Kwon, D., Kim, H., Kim, J., Suh, S. C., Kim, I., and Kim, K. J. (2017). “A survey of deep learning-based network anomaly detection,” Cluster Comput., pp. 1–13.
30.
go back to reference Kim, J., Kim, J., Thu, H. L. T., & Kim, H. (2016). Long short term memory recurrent neural network classifier for intrusion detection. In 2016 International Conference on Platform Technology and Service (PlatCon) (pp. 1-5). Kim, J., Kim, J., Thu, H. L. T., & Kim, H. (2016). Long short term memory recurrent neural network classifier for intrusion detection. In 2016 International Conference on Platform Technology and Service (PlatCon) (pp. 1-5).
31.
go back to reference Niyaz, Q., Sun, W., and Javaid, A. Y. (2017). “A Deep Learning Based DDoS Detection System in Software-Defined Networking (SDN),” ICST Trans. Secur. Saf., vol. 4, no. 12, p. 153515. Niyaz, Q., Sun, W., and Javaid, A. Y. (2017). “A Deep Learning Based DDoS Detection System in Software-Defined Networking (SDN),” ICST Trans. Secur. Saf., vol. 4, no. 12, p. 153515.
32.
go back to reference Li, H., Wei, F., and Hu, H. (2019). “Enabling Dynamic Network Access Control with Anomaly-based IDS and SDN”, Proc. of the ACM Int. Workshop on Security in Software Defined Networks & Network Function Virtualization, pp. 13–16. Li, H., Wei, F., and Hu, H. (2019). “Enabling Dynamic Network Access Control with Anomaly-based IDS and SDN”, Proc. of the ACM Int. Workshop on Security in Software Defined Networks & Network Function Virtualization, pp. 13–16.
34.
go back to reference Ahmim, A., Maglaras, L., Amine Ferrag, M., Derdour, M., Janicke, H. (2019). “A Novel Hierarchical Intrusion Detection System based on Decision Tree and Rules-based Models,” 15th Int. Conf. on Distributed Computing in Sensor Systems (DCOSS), pp. 228–233. Ahmim, A., Maglaras, L., Amine Ferrag, M., Derdour, M., Janicke, H. (2019). “A Novel Hierarchical Intrusion Detection System based on Decision Tree and Rules-based Models,” 15th Int. Conf. on Distributed Computing in Sensor Systems (DCOSS), pp. 228–233.
37.
go back to reference Zhou, M., Li, Y., Yuan, H., Wang, J., & Pu, Q. (2021). Indoor WLAN personnel intrusion detection using transfer learning-aided generative adversarial network with light-loaded database. Mobile Networks and Applications, 26, 1024–1042.CrossRef Zhou, M., Li, Y., Yuan, H., Wang, J., & Pu, Q. (2021). Indoor WLAN personnel intrusion detection using transfer learning-aided generative adversarial network with light-loaded database. Mobile Networks and Applications, 26, 1024–1042.CrossRef
39.
go back to reference Pragya, M., Arya, K. V., & Hardev Pal, S. (2018). Intrusion detection system against colluding misbehavior in MANETs. Wireless Personal Communications, 100(2), 491–503.CrossRef Pragya, M., Arya, K. V., & Hardev Pal, S. (2018). Intrusion detection system against colluding misbehavior in MANETs. Wireless Personal Communications, 100(2), 491–503.CrossRef
40.
go back to reference Meyer,P., Hackel, T., Langer, F., Stahlbock, L., Decker, J., Eckhardt, S. A., Korf, F., Schmit, T. C., Schuppel, F. (2020). “Demo: A Security Infrastructure for Vehicular Information Using SDN, Intrusion Detection, and a Defense Center in the Cloud,” IEEE Vehicular Networking Conference, New York, NY, USA, 16–18 Dec. 2020. DOI: https://doi.org/10.1109/VNC51378.2020.9318351. Meyer,P., Hackel, T., Langer, F., Stahlbock, L., Decker, J., Eckhardt, S. A., Korf, F., Schmit, T. C., Schuppel, F. (2020). “Demo: A Security Infrastructure for Vehicular Information Using SDN, Intrusion Detection, and a Defense Center in the Cloud,” IEEE Vehicular Networking Conference, New York, NY, USA, 16–18 Dec. 2020. DOI: https://​doi.​org/​10.​1109/​VNC51378.​2020.​9318351.
41.
go back to reference Tsogbaatar, E., Bhuyan, M. H., Taenaka, Y., Fall, D., Gonchigsumlaa, K., Elmroth, E., & Kadobayashi, Y. (2021). DeL-IoT: A deep ensemble learning approach to uncover anomalies in IoT. Internet of Things, 14, 100391.CrossRef Tsogbaatar, E., Bhuyan, M. H., Taenaka, Y., Fall, D., Gonchigsumlaa, K., Elmroth, E., & Kadobayashi, Y. (2021). DeL-IoT: A deep ensemble learning approach to uncover anomalies in IoT. Internet of Things, 14, 100391.CrossRef
42.
go back to reference Kim, J., Shim, M., Hong, S., Shin, Y., & Choi, E. (2020). Intelligent detection of IoT botnets using machine learning and deep learning. Applied Sciences, 10(19), 7009.CrossRef Kim, J., Shim, M., Hong, S., Shin, Y., & Choi, E. (2020). Intelligent detection of IoT botnets using machine learning and deep learning. Applied Sciences, 10(19), 7009.CrossRef
45.
go back to reference Mirsky, Y., Doitshman, T., Elovici, Y., Shabtai, A. (2018). “Kitsune: An Ensemble of Autoencoders for Online Network Intrusion Detection,” Network and Distributed System Security Symposium (NDSS’18), San Diego, CA, USA, 18–21 . DOI: https://doi.org/10.14722/ndss.2018.232. Mirsky, Y., Doitshman, T., Elovici, Y., Shabtai, A. (2018). “Kitsune: An Ensemble of Autoencoders for Online Network Intrusion Detection,” Network and Distributed System Security Symposium (NDSS’18), San Diego, CA, USA, 18–21 . DOI: https://​doi.​org/​10.​14722/​ndss.​2018.​232.
46.
go back to reference Fan, W., Park, Y., Kumar, S., Ganta, P., Zhou, X., Chang, S.-Y. (2021). “Blockchain-Enabled Collaborative Intrusion Detection in Software Defined Networks,” IEEE 19th Int. Conf. o Trust, Security and Privacy in Computing and Communications (TrustCom), Guangzhou, China, 29 Dec.-1 Jan. 2021. DOI: https://doi.org/10.1109/TrustCom50675.2020.00129. Fan, W., Park, Y., Kumar, S., Ganta, P., Zhou, X., Chang, S.-Y. (2021). “Blockchain-Enabled Collaborative Intrusion Detection in Software Defined Networks,” IEEE 19th Int. Conf. o Trust, Security and Privacy in Computing and Communications (TrustCom), Guangzhou, China, 29 Dec.-1 Jan. 2021. DOI: https://​doi.​org/​10.​1109/​TrustCom50675.​2020.​00129.
47.
go back to reference Kamyshanska, H., and Memisevic, R. (2013). “On autoencoder scoring,” Proc. 30th Int. Conf. Mach. Learn., vol. 28, pp. 1757–1765. Kamyshanska, H., and Memisevic, R. (2013). “On autoencoder scoring,” Proc. 30th Int. Conf. Mach. Learn., vol. 28, pp. 1757–1765.
48.
go back to reference Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.CrossRef Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.CrossRef
49.
go back to reference Abbas, A. R., Wolslegel, K., Seshasayee, D., Modrusan, Z., & Clark, H. F. (2009). Deconvolution of blood microarray data identifies cellular activation patterns in systemic lupus erythematosus. PLoS ONE, 4(7), 1–19.CrossRef Abbas, A. R., Wolslegel, K., Seshasayee, D., Modrusan, Z., & Clark, H. F. (2009). Deconvolution of blood microarray data identifies cellular activation patterns in systemic lupus erythematosus. PLoS ONE, 4(7), 1–19.CrossRef
50.
go back to reference Zhuang, F., Cheng, X., Luo, P., Pan, S. J., & He, Q. (2015, June). Supervised representation learning: Transfer learning with deep autoencoders. Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI), pp. 4119–4125. Zhuang, F., Cheng, X., Luo, P., Pan, S. J., & He, Q. (2015, June). Supervised representation learning: Transfer learning with deep autoencoders. Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI), pp. 4119–4125.
51.
go back to reference Ryali, C., Nallamala, G., Fedus, W., and Prabhuzantye, Y. (2015). “Efficient Encoding Using Deep Neural Networks”. Ryali, C., Nallamala, G., Fedus, W., and Prabhuzantye, Y. (2015). “Efficient Encoding Using Deep Neural Networks”.
52.
go back to reference Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504–507.MathSciNetCrossRef Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504–507.MathSciNetCrossRef
53.
go back to reference Hinton, G. E. (2007). Learning multiple layers of representation. Trends in Cognitive Sciences, 11(10), 428–434.CrossRef Hinton, G. E. (2007). Learning multiple layers of representation. Trends in Cognitive Sciences, 11(10), 428–434.CrossRef
54.
go back to reference Yousefi-Azar, M., Varadharajan, V., Hamey, L., & Tupakula, U. (2017, May). Autoencoder-based feature learning for cyber security applications. In 2017 International joint conference on neural networks (IJCNN) (pp. 3854-3861). Yousefi-Azar, M., Varadharajan, V., Hamey, L., & Tupakula, U. (2017, May). Autoencoder-based feature learning for cyber security applications. In 2017 International joint conference on neural networks (IJCNN) (pp. 3854-3861).
55.
go back to reference Salama, M., Eid, H., and Ramadan, R. (2011). “Hybrid intelligent intrusion detection scheme,” Adv. Intell. Soft Comput., pp. 293–303. Salama, M., Eid, H., and Ramadan, R. (2011). “Hybrid intelligent intrusion detection scheme,” Adv. Intell. Soft Comput., pp. 293–303.
56.
go back to reference Meena, G., & Choudhary, R. R. (2017, July). A review paper on IDS classification using KDD 99 and NSL KDD dataset in WEKA. In 2017 International Conference on Computer, Communications and Electronics (Comptelix) (pp. 553-558). Meena, G., & Choudhary, R. R. (2017, July). A review paper on IDS classification using KDD 99 and NSL KDD dataset in WEKA. In 2017 International Conference on Computer, Communications and Electronics (Comptelix) (pp. 553-558).
57.
go back to reference Dhanabal, L., & Shantharajah, S. P. (2015). A study on NSL-KDD Dataset For Intrusion Detection System Based On Classification Algorithms. Int. J. Adv. Res. Comput. Commun. Eng., 4(6), 446–452. Dhanabal, L., & Shantharajah, S. P. (2015). A study on NSL-KDD Dataset For Intrusion Detection System Based On Classification Algorithms. Int. J. Adv. Res. Comput. Commun. Eng., 4(6), 446–452.
58.
go back to reference Revathi, S., & Malathi, A. (2013). A detailed analysis on NSL-KDD dataset using various machine learning techniques for intrusion detection. International Journal of Engineering Research & Technology (IJERT), 2(12), 1848–1853. Revathi, S., & Malathi, A. (2013). A detailed analysis on NSL-KDD dataset using various machine learning techniques for intrusion detection. International Journal of Engineering Research & Technology (IJERT), 2(12), 1848–1853.
59.
go back to reference Shiravi, A., Shiravi, H., Tavallaee, M., & Ghorbani, A. A. (2012). Toward developing a systematic approach to generate benchmark datasets for intrusion detection. Computers & Security, 31(3), 357–374.CrossRef Shiravi, A., Shiravi, H., Tavallaee, M., & Ghorbani, A. A. (2012). Toward developing a systematic approach to generate benchmark datasets for intrusion detection. Computers & Security, 31(3), 357–374.CrossRef
60.
go back to reference Sharafaldin, I., Habibi Lashkari, A., and Ghorbani, A. A. (2018) “Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic Characterization,” Proc. 4th Int. Conf. Inf. Syst. Secur. Priv., no. Cic, pp. 108–116. Sharafaldin, I., Habibi Lashkari, A., and Ghorbani, A. A. (2018) “Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic Characterization,” Proc. 4th Int. Conf. Inf. Syst. Secur. Priv., no. Cic, pp. 108–116.
61.
go back to reference Chowdhury, M. U., Hammond, F., Konowicz, G., Li, J., Xin, C., and Wu, H. (2017). “A Few-shot Deep Learning Approach for Improved Intrusion Detection A Few-shot Deep Learning Approach for Improved Intrusion Detection,” IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conf. (UEMCON), New York, NY, USA, p. pp.1–8. Chowdhury, M. U., Hammond, F., Konowicz, G., Li, J., Xin, C., and Wu, H. (2017). “A Few-shot Deep Learning Approach for Improved Intrusion Detection A Few-shot Deep Learning Approach for Improved Intrusion Detection,” IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conf. (UEMCON), New York, NY, USA, p. pp.1–8.
62.
go back to reference Aljawarneh, S., Aldwairi, M., & Yassein, M. B. (2018). Anomaly-based intrusion detection system through feature selection analysis and building hybrid efficient model. Journal of Computer Science, 25(March), 152–160.CrossRef Aljawarneh, S., Aldwairi, M., & Yassein, M. B. (2018). Anomaly-based intrusion detection system through feature selection analysis and building hybrid efficient model. Journal of Computer Science, 25(March), 152–160.CrossRef
63.
go back to reference Sathya, R., and Thangarajan, R.(2015). “Efficient anomaly detection and mitigation in software defined networking environment,” in 2015 2nd International Conference on Electronics and Communication Systems (ICECS), 2015, pp. 479–484. Sathya, R., and Thangarajan, R.(2015). “Efficient anomaly detection and mitigation in software defined networking environment,” in 2015 2nd International Conference on Electronics and Communication Systems (ICECS), 2015, pp. 479–484.
64.
go back to reference Mehdi,S. A., Khalid, J., and Khayam, S. A. (2011). “Revisiting Traffic Anomaly Detection Using Software Defined Networking,” Int. Workshop on Recent Advances in Intrusion Detection (RAID), pp. 161–180. Mehdi,S. A., Khalid, J., and Khayam, S. A. (2011). “Revisiting Traffic Anomaly Detection Using Software Defined Networking,” Int. Workshop on Recent Advances in Intrusion Detection (RAID), pp. 161–180.
65.
go back to reference Le, A., Dinh, P., Le, H., and Tran, N. C. (2016). “Flexible Network-Based Intrusion Detection and Prevention System on Software-Defined Networks,” Proc. - 2015 Int. Conf. Adv. Comput. Appl. ACOMP 2015, pp. 106–111. Le, A., Dinh, P., Le, H., and Tran, N. C. (2016). “Flexible Network-Based Intrusion Detection and Prevention System on Software-Defined Networks,” Proc. - 2015 Int. Conf. Adv. Comput. Appl. ACOMP 2015, pp. 106–111.
66.
go back to reference Yin, C., Zhu, Y., Fei, J., & He, X. (2017). A deep learning approach for intrusion detection using recurrent neural networks. IEEE Access, 5, 21954–21961.CrossRef Yin, C., Zhu, Y., Fei, J., & He, X. (2017). A deep learning approach for intrusion detection using recurrent neural networks. IEEE Access, 5, 21954–21961.CrossRef
67.
go back to reference Potluri, S., & Diedrich, C. (2017). Deep feature extraction for multi-class intrusion detection in industrial control systems. Int. J. Comput. Theory Eng., 9(5), 374–379.CrossRef Potluri, S., & Diedrich, C. (2017). Deep feature extraction for multi-class intrusion detection in industrial control systems. Int. J. Comput. Theory Eng., 9(5), 374–379.CrossRef
Metadata
Title
Detection and Multi-Class Classification of Intrusion in Software Defined Networks Using Stacked Auto-Encoders and CICIDS2017 Dataset
Authors
Padideh Choobdar
Marjan Naderan
Mahmood Naderan
Publication date
28-09-2021
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 1/2022
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-09139-y

Other articles of this Issue 1/2022

Wireless Personal Communications 1/2022 Go to the issue