Skip to main content
Top
Published in: Journal of Computational Neuroscience 3/2014

01-12-2014

Determining the contributions of divisive and subtractive feedback in the Hodgkin-Huxley model

Authors: Sevgi Şengül, Robert Clewley, Richard Bertram, Joël Tabak

Published in: Journal of Computational Neuroscience | Issue 3/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The Hodgkin-Huxley (HH) model is the basis for numerous neural models. There are two negative feedback processes in the HH model that regulate rhythmic spiking. The first is an outward current with an activation variable n that has an opposite influence to the excitatory inward current and therefore provides subtractive negative feedback. The other is the inactivation of an inward current with an inactivation variable h that reduces the amount of positive feedback and therefore provides divisive feedback. Rhythmic spiking can be obtained with either negative feedback process, so we ask what is gained by having two feedback processes. We also ask how the different negative feedback processes contribute to spiking. We show that having two negative feedback processes makes the HH model more robust to changes in applied currents and conductance densities than models that possess only one negative feedback variable. We also show that the contributions made by the subtractive and divisive feedback variables are not static, but depend on time scales and conductance values. In particular, they contribute differently to the dynamics in Type I versus Type II neurons.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Clewley, R. (2004). Dominant scale analysis for automatic reduction of high-dimensional ODE systems. In Bar-Yam Y (Ed.), ICCS 2004 Proceedings. New England: Complex Systems Institute. Clewley, R. (2004). Dominant scale analysis for automatic reduction of high-dimensional ODE systems. In Bar-Yam Y (Ed.), ICCS 2004 Proceedings. New England: Complex Systems Institute.
go back to reference Clewley, R., Rotstein, H. G., & Kopell, N. (2005). A computational tool for the reduction of nonlinear ODE systems possessing multiple scales. Multiscale Modeling and Simulation, 4(3), 732–759.CrossRef Clewley, R., Rotstein, H. G., & Kopell, N. (2005). A computational tool for the reduction of nonlinear ODE systems possessing multiple scales. Multiscale Modeling and Simulation, 4(3), 732–759.CrossRef
go back to reference Clewley, R., Soto-Treviño, C., & Nadim, F. (2009). Dominant ionic mechanisms explored in the transition between spiking and bursting using local low-dimensional reductions of a biophysically realistic model neuron. Journal of Computational Neuroscience, 26(1), 75–90.PubMedCentralPubMedCrossRef Clewley, R., Soto-Treviño, C., & Nadim, F. (2009). Dominant ionic mechanisms explored in the transition between spiking and bursting using local low-dimensional reductions of a biophysically realistic model neuron. Journal of Computational Neuroscience, 26(1), 75–90.PubMedCentralPubMedCrossRef
go back to reference Ermentrout, G. (1996). Type I membranes, phase resetting curves, and synchrony. Neural Computation, 7(5), 979–1001.CrossRef Ermentrout, G. (1996). Type I membranes, phase resetting curves, and synchrony. Neural Computation, 7(5), 979–1001.CrossRef
go back to reference Ermentrout, G. (2002). Simulating, analyzing, and animating dynamical systems. Philadelphia, PA: SIAM. Ermentrout, G. (2002). Simulating, analyzing, and animating dynamical systems. Philadelphia, PA: SIAM.
go back to reference Ermentrout, G., & Chow, C. C. (2002). Modeling neural oscillations. Physiology & Behaviour, 77(2002), 629–633.CrossRef Ermentrout, G., & Chow, C. C. (2002). Modeling neural oscillations. Physiology & Behaviour, 77(2002), 629–633.CrossRef
go back to reference Friesen, W. O., & Block, G. D. (1984). What is a biological oscillator? The American Journal of Physiology, 246(6 Pt 2), R847–R853.PubMed Friesen, W. O., & Block, G. D. (1984). What is a biological oscillator? The American Journal of Physiology, 246(6 Pt 2), R847–R853.PubMed
go back to reference Hairer, E., & Wanner, G. (1999). Stiff differential equations solved by Radau methods. Journal of Computational and Applied Mathematics, 111, 93–111. Hairer, E., & Wanner, G. (1999). Stiff differential equations solved by Radau methods. Journal of Computational and Applied Mathematics, 111, 93–111.
go back to reference Hodgkin, A. L. (1948). The local electric changes associated with repetitive action in a non-medullated axon. Journal of Physiology, 107(2), 165–181.PubMedCentralPubMed Hodgkin, A. L. (1948). The local electric changes associated with repetitive action in a non-medullated axon. Journal of Physiology, 107(2), 165–181.PubMedCentralPubMed
go back to reference Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117(4), 500–544.PubMedCentralPubMed Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117(4), 500–544.PubMedCentralPubMed
go back to reference Howell, A. S., Jin, M., Wu, C., Zyla, T. R., Elston, T. C., & Lew, D. J. (2012). Negative feedback enhances robustness in the yeast polarity establishment circuit. Cell, 149(2), 322–333.PubMedCentralPubMedCrossRef Howell, A. S., Jin, M., Wu, C., Zyla, T. R., Elston, T. C., & Lew, D. J. (2012). Negative feedback enhances robustness in the yeast polarity establishment circuit. Cell, 149(2), 322–333.PubMedCentralPubMedCrossRef
go back to reference Izhikevich, E. M. (1999). Class 1 neural excitability, conventional synapses, weakly connected networks, and mathematical foundations of pulse-coupled models. IEEE Transaction on Neural Networks, 10(3), 499–507.CrossRef Izhikevich, E. M. (1999). Class 1 neural excitability, conventional synapses, weakly connected networks, and mathematical foundations of pulse-coupled models. IEEE Transaction on Neural Networks, 10(3), 499–507.CrossRef
go back to reference Izhikevich, E. M. (2000). Neural excitability, spiking, and bursting. International Journal of Bifurcation and Chaos, 10(6), 1171–1266.CrossRef Izhikevich, E. M. (2000). Neural excitability, spiking, and bursting. International Journal of Bifurcation and Chaos, 10(6), 1171–1266.CrossRef
go back to reference Kopell, N., Ermentrout, G. B., Whittington, M. A., & Traub, R. D. (2000). Gamma rhythms and beta rhythms have different synchronization properties. Proceedings of the National Academy of Sciences of the United States of America, 97(4), 1867–1872.PubMedCentralPubMedCrossRef Kopell, N., Ermentrout, G. B., Whittington, M. A., & Traub, R. D. (2000). Gamma rhythms and beta rhythms have different synchronization properties. Proceedings of the National Academy of Sciences of the United States of America, 97(4), 1867–1872.PubMedCentralPubMedCrossRef
go back to reference Meng, X., Huguet, G., & Rinzel, J. (2012). Type III excitability, slope sensitivity and coincidence detection. Discrete and Continuous DYnamical Systems, 32(8), 2729–2757.PubMedCentralPubMedCrossRef Meng, X., Huguet, G., & Rinzel, J. (2012). Type III excitability, slope sensitivity and coincidence detection. Discrete and Continuous DYnamical Systems, 32(8), 2729–2757.PubMedCentralPubMedCrossRef
go back to reference Nagumo, J., Arimoto, S., & Yoshizawa, S. (1962). An active pulse transmission line simulating nerve axon. Proceedings of the IRE, 50(10), 2061–2070.CrossRef Nagumo, J., Arimoto, S., & Yoshizawa, S. (1962). An active pulse transmission line simulating nerve axon. Proceedings of the IRE, 50(10), 2061–2070.CrossRef
go back to reference Rinzel, J. (1985). Excitation dynamics: insights from simplified membrane models. Federation Proceedings, 4(15), 2944–2946. Rinzel, J. (1985). Excitation dynamics: insights from simplified membrane models. Federation Proceedings, 4(15), 2944–2946.
go back to reference Tabak, J., O’Donovan, M. J., & Rinzel, J. (2006). Differential control of active and silent phases in relaxation models of neuronal rhythms. Journal of Computational Neuroscience, 21(3), 307–328.PubMedCrossRef Tabak, J., O’Donovan, M. J., & Rinzel, J. (2006). Differential control of active and silent phases in relaxation models of neuronal rhythms. Journal of Computational Neuroscience, 21(3), 307–328.PubMedCrossRef
go back to reference Tabak, J., Rinzel, J., & Bertram, R. (2011). Quantifying the relative contributions of divisive and subtractive feedback to rhythm generation. PLoS Computational Biology, 7(4), e1001124.PubMedCentralPubMedCrossRef Tabak, J., Rinzel, J., & Bertram, R. (2011). Quantifying the relative contributions of divisive and subtractive feedback to rhythm generation. PLoS Computational Biology, 7(4), e1001124.PubMedCentralPubMedCrossRef
go back to reference Tsai, T. Y., Choi, Y. S., Ma, W., Pomerening, J. R., Tang, C., & Ferrell, J. E., Jr. (2008). Robust, tunable biological oscillations from interlinked positive and negative feedback loops. Science, 321(5885), 126–129.PubMedCentralPubMedCrossRef Tsai, T. Y., Choi, Y. S., Ma, W., Pomerening, J. R., Tang, C., & Ferrell, J. E., Jr. (2008). Robust, tunable biological oscillations from interlinked positive and negative feedback loops. Science, 321(5885), 126–129.PubMedCentralPubMedCrossRef
go back to reference Wang, X.J., & Rinzel, J. (1992). Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Computation, 4(1), 84–97. Wang, X.J., & Rinzel, J. (1992). Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Computation, 4(1), 84–97.
Metadata
Title
Determining the contributions of divisive and subtractive feedback in the Hodgkin-Huxley model
Authors
Sevgi Şengül
Robert Clewley
Richard Bertram
Joël Tabak
Publication date
01-12-2014
Publisher
Springer US
Published in
Journal of Computational Neuroscience / Issue 3/2014
Print ISSN: 0929-5313
Electronic ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-014-0511-y

Other articles of this Issue 3/2014

Journal of Computational Neuroscience 3/2014 Go to the issue

Premium Partner