Skip to main content
Top

2016 | OriginalPaper | Chapter

6. Development of a Specimen for In-Situ Diffraction Planar Biaxial Experiments

Authors : G. M. Hommer, A. P. Stebner

Published in: Fracture, Fatigue, Failure and Damage Evolution, Volume 8

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, the design of cruciform shaped, planar biaxial loading specimens using finite element analysis, mechanical testing, and digital image correlation is discussed. The specimens were designed to be capable of arbitrary combinations of tension and compression loading. Digital image correlation results from uniaxial tension tests of first-generation specimen infer key design attributes of second-generation specimen. Finite element results are compared with a plane stress analytical formulation and differences between the two are attributed to stress concentration fields originating at the intersection of specimen arms. These results motivate a parametric finite element geometry optimization of second-generation specimen.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Metallic materials—sheet and strip—biaxial tensile testing method using a cruciform test piece, ISO 16842:2014 Metallic materials—sheet and strip—biaxial tensile testing method using a cruciform test piece, ISO 16842:2014
2.
go back to reference Abu-Farha, F., Hector Jr., L.G., Khraisheh, M.: Cruciform-shaped specimens for elevated temperature biaxial testing of lightweight materials. JOM 61(8), 48–56 (2009)CrossRef Abu-Farha, F., Hector Jr., L.G., Khraisheh, M.: Cruciform-shaped specimens for elevated temperature biaxial testing of lightweight materials. JOM 61(8), 48–56 (2009)CrossRef
3.
go back to reference Demmerle, S., Boehler, J.P.: Optimal design of biaxial tensile cruciform specimens. J. Mech. Phys. Solids 41(1), 143–181 (1993)CrossRef Demmerle, S., Boehler, J.P.: Optimal design of biaxial tensile cruciform specimens. J. Mech. Phys. Solids 41(1), 143–181 (1993)CrossRef
4.
go back to reference Hanabusa, Y., Takizawa, H., Kuwabara, T.: Numerical verification of a biaxial tensile test method using a cruciform specimen. J. Mater. Process. Technol. 213(6), 961–970 (2013)CrossRef Hanabusa, Y., Takizawa, H., Kuwabara, T.: Numerical verification of a biaxial tensile test method using a cruciform specimen. J. Mater. Process. Technol. 213(6), 961–970 (2013)CrossRef
5.
go back to reference Hu, J.-J., Chen, G.-W., Liu, Y.-C., Hsu, S.-S.: Influence of specimen geometry on the estimation of the planar biaxial mechanical properties of cruciform specimens. Exp. Mech. 54(4), 615–631 (2014)CrossRef Hu, J.-J., Chen, G.-W., Liu, Y.-C., Hsu, S.-S.: Influence of specimen geometry on the estimation of the planar biaxial mechanical properties of cruciform specimens. Exp. Mech. 54(4), 615–631 (2014)CrossRef
6.
go back to reference Kuwabara, T., Kuroda, M., Tvergaard, V., Nomura, K.: Use of abrupt strain path change for determining subsequent yield surface: experimental study with metal sheets. Acta Mater. 48(9), 2071–2079 (2000)CrossRef Kuwabara, T., Kuroda, M., Tvergaard, V., Nomura, K.: Use of abrupt strain path change for determining subsequent yield surface: experimental study with metal sheets. Acta Mater. 48(9), 2071–2079 (2000)CrossRef
7.
go back to reference Makinde, A., Thibodeau, L., Neale, K.W.: Development of an apparatus for biaxial testing using cruciform specimens. Exp. Mech. 32(2), 138–144 (1992)CrossRef Makinde, A., Thibodeau, L., Neale, K.W.: Development of an apparatus for biaxial testing using cruciform specimens. Exp. Mech. 32(2), 138–144 (1992)CrossRef
8.
go back to reference Makris, A., Vandenbergh, T., Ramault, C., Van Hemelrijck, D., Lamkanfi, E., Van Paepegem, W.: Shape optimisation of a biaxially loaded cruciform specimen. Polym. Test. 29(2), 216–223 (2010)CrossRef Makris, A., Vandenbergh, T., Ramault, C., Van Hemelrijck, D., Lamkanfi, E., Van Paepegem, W.: Shape optimisation of a biaxially loaded cruciform specimen. Polym. Test. 29(2), 216–223 (2010)CrossRef
9.
go back to reference Shiratori, E., Ikegami, K.: Experimental study of the subsequent yield surface by using cross-shaped specimens. J. Mech. Phys. Solids 16(6), 373–394 (1968)CrossRef Shiratori, E., Ikegami, K.: Experimental study of the subsequent yield surface by using cross-shaped specimens. J. Mech. Phys. Solids 16(6), 373–394 (1968)CrossRef
10.
go back to reference Tiernan, P., Hannon, A.: Design optimisation of biaxial tensile test specimen using finite element analysis. Int. J. Mater. Form. 7(1), 117–123 (2014)CrossRef Tiernan, P., Hannon, A.: Design optimisation of biaxial tensile test specimen using finite element analysis. Int. J. Mater. Form. 7(1), 117–123 (2014)CrossRef
11.
go back to reference Yu, Y., Wan, M., Wu, X.-D., Zhou, X.-B.: Design of a cruciform biaxial tensile specimen for limit strain analysis by FEM. J. Mater. Process. Technol. 123(1), 67–70 (2002)CrossRef Yu, Y., Wan, M., Wu, X.-D., Zhou, X.-B.: Design of a cruciform biaxial tensile specimen for limit strain analysis by FEM. J. Mater. Process. Technol. 123(1), 67–70 (2002)CrossRef
13.
go back to reference Williams, M.L.: On the stress distribution at the base of a stationary crack. J. Appl. Mech. 24, 111–114 (1957) Williams, M.L.: On the stress distribution at the base of a stationary crack. J. Appl. Mech. 24, 111–114 (1957)
14.
go back to reference Irwin, G.R.: Analysis of stresses and strains near the end of a crack transversing a plate. J. Appl. Mech. 24, 361–364 (1957) Irwin, G.R.: Analysis of stresses and strains near the end of a crack transversing a plate. J. Appl. Mech. 24, 361–364 (1957)
15.
go back to reference Sanford, R.J.: A critical re-examination of the westergaard method for solving opening-mode crack problems. Mech. Res. Commun. 6(5), 289–294 (1979)MATHCrossRef Sanford, R.J.: A critical re-examination of the westergaard method for solving opening-mode crack problems. Mech. Res. Commun. 6(5), 289–294 (1979)MATHCrossRef
16.
go back to reference Barber, J.R.: Plane strain and plane stress. In: Barber, J.R. (ed.) Elasticity, 3rd edn, pp. 40–41. Springer, New York (2010)CrossRef Barber, J.R.: Plane strain and plane stress. In: Barber, J.R. (ed.) Elasticity, 3rd edn, pp. 40–41. Springer, New York (2010)CrossRef
Metadata
Title
Development of a Specimen for In-Situ Diffraction Planar Biaxial Experiments
Authors
G. M. Hommer
A. P. Stebner
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-21611-9_6

Premium Partners