Skip to main content
Top

2017 | OriginalPaper | Chapter

25. Development of Magnetorheological Elastomers (MREs) for Strength and Fatigue Resistance

Authors : J. McIntyre, S. Jerrams

Published in: Deformation and Fracture Behaviour of Polymer Materials

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Natural rubber (NR)-based magnetorheological elastomers (MREs) exhibiting a reasonable switching effect were fabricated and tested. They were strong enough for use in automotive applications but still needed protection against ageing. Ethylene–propylene–diene rubber (EPDM) is a cost-effective material that is frequently used in the automotive industry because of its advantageous range of properties. With these applications in mind, it was a logical progression to the development of EPDM-based MREs. Unlike strain-crystallising NR, EPDM requires reinforcement to render its tensile and fatigue strength suitable for use in most applications. While small amounts of carbon black were sufficient for the NR-based MREs, a trade-off between non-reinforcing carbonyl iron powder (CIP) and reinforcing carbon black fillers was necessary to imbue the EPDM-based MREs with reasonably good mechanical properties. With a limit on the quantities of fillers that could be added, attention was turned to the matrix material itself and the blend of polymers employed in EPDM2 and EPDM3 were chosen in order to strengthen the EPDM-based MREs by enhancing polymer molecular weight and reinforcement. However, an unwanted effect of the stronger polymer network was the high-viscosity matrix in these compounds which hindered the alignment of magnetic particles early in the vulcanisation process. This led to poorer magnetic particle orientation, resulting in a more homogenous dispersion of the CIP and consequently produced MRE specimens that were more isotropic than anisotropic. Subsequently the switching effect of these materials was lower than would be obtained in MREs with a low viscosity (say, 40 MU) matrix. It was not feasible to sacrifice reinforcing carbon black in these compounds, but there are other possibilities open to the rubber compounder. An alternative means of reducing the viscosity of EPDM3 is simply to double the content of softening oil. This would have a slight but minimal negative effect on the tensile properties of the material. The addition of a small amount of retardant to delay vulcanisation and extend the time available for orientation of the magnetic particles into chains would also be beneficial. This would also reduce the modulus of the compound, but the reduction would again be negligible. As in all material design, there is a trade-off to be made in choosing the right combination of properties, but both of these changes would result in the development of an effective magnetorheological compound.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Nguyen, Q., Choi, S., Wereley, N.M.: Optimal design of magnetorheological valves via a finite element method considering control energy and a time constant. Smart Mater. Struct. 17, 1–12 (2008) Nguyen, Q., Choi, S., Wereley, N.M.: Optimal design of magnetorheological valves via a finite element method considering control energy and a time constant. Smart Mater. Struct. 17, 1–12 (2008)
3.
go back to reference Rosenfeld, N., Wereley, N.M.: Volume-constrained optimization of magnetorheological and electrorheological valves and dampers. Smart Mater. Struct. 13, 1303–1313 (2004)CrossRef Rosenfeld, N., Wereley, N.M.: Volume-constrained optimization of magnetorheological and electrorheological valves and dampers. Smart Mater. Struct. 13, 1303–1313 (2004)CrossRef
4.
go back to reference Hu, W., Robinson, R., Wereley, N.M.: A design strategy for magnetorheological dampers using porous valves. In: 11th Conference on Electrorheological Fluids and Magnetorheological Suspensions, (Dresden, 25.–29.08.2008), Journal of Physics: Conference Series 149, 4 p. (2009) Hu, W., Robinson, R., Wereley, N.M.: A design strategy for magnetorheological dampers using porous valves. In: 11th Conference on Electrorheological Fluids and Magnetorheological Suspensions, (Dresden, 25.–29.08.2008), Journal of Physics: Conference Series 149, 4 p. (2009)
5.
go back to reference Li, Y., Li, J., Tian, T., Li, W.: A highly adjustable magnetorheological elastomer base isolator for applications of real-time adaptive control. Smart Mater. Struct. 22, 095020 (2013). (18 pages)CrossRef Li, Y., Li, J., Tian, T., Li, W.: A highly adjustable magnetorheological elastomer base isolator for applications of real-time adaptive control. Smart Mater. Struct. 22, 095020 (2013). (18 pages)CrossRef
6.
go back to reference Reichert Jr., B.A.: Application of Magnetorheological Dampers for Vehicle Seat Suspensions. Master thesis, Virginia Polytechnic Institute and State University, Blacksburg (1997) Reichert Jr., B.A.: Application of Magnetorheological Dampers for Vehicle Seat Suspensions. Master thesis, Virginia Polytechnic Institute and State University, Blacksburg (1997)
7.
go back to reference Marcu, F.: Semiactive Cab Suspension Control for Semitruck Applications. PhD thesis, Virginia Polytechnic Institute and State University, Blacksburg (2009) Marcu, F.: Semiactive Cab Suspension Control for Semitruck Applications. PhD thesis, Virginia Polytechnic Institute and State University, Blacksburg (2009)
8.
go back to reference Carlson, D.J., Leroy, D.F., Holzheimer, J.C., Prindle, D.R., Marjoram, R.H.: Magnetorheological Fluid Brake. US Patent 5460585 A (1998) Carlson, D.J., Leroy, D.F., Holzheimer, J.C., Prindle, D.R., Marjoram, R.H.: Magnetorheological Fluid Brake. US Patent 5460585 A (1998)
9.
go back to reference Chen, L., Gong, X., Jiang, W., Yao, J., Deng, H., Li, W.: Investigation on magnetorheological elastomers based on natural rubber. J. Mater. Sci. 42, 5483–5489 (2007)CrossRef Chen, L., Gong, X., Jiang, W., Yao, J., Deng, H., Li, W.: Investigation on magnetorheological elastomers based on natural rubber. J. Mater. Sci. 42, 5483–5489 (2007)CrossRef
10.
go back to reference Zhang, W., Gong, X., Sun, T., Fan, Y., Jiang, W.: Effect of cyclic deformation on magnetorheological elastomers. Chin. J. Chem. Phys. 23, 226–230 (2010)CrossRef Zhang, W., Gong, X., Sun, T., Fan, Y., Jiang, W.: Effect of cyclic deformation on magnetorheological elastomers. Chin. J. Chem. Phys. 23, 226–230 (2010)CrossRef
11.
go back to reference Stepanov, G., Abramchuk, S., Grishin, D., Nikitin, L., Kramarenko, E.: Khokhlov, A: Effect of a homogenous magnetic field on the viscoelastic behaviour of magnetic elastomers. Polymer 48, 488–495 (2007)CrossRef Stepanov, G., Abramchuk, S., Grishin, D., Nikitin, L., Kramarenko, E.: Khokhlov, A: Effect of a homogenous magnetic field on the viscoelastic behaviour of magnetic elastomers. Polymer 48, 488–495 (2007)CrossRef
12.
go back to reference Guan, X., Dong, X., Ou, J.: Magnetostrictive effect of magnetorheological elastomer. J. Magn. Magn. Mater. 320, 158–163 (2007)CrossRef Guan, X., Dong, X., Ou, J.: Magnetostrictive effect of magnetorheological elastomer. J. Magn. Magn. Mater. 320, 158–163 (2007)CrossRef
14.
go back to reference Jolly, M.R., Carlson, J.D., Munoz, B.C., Bullions, T.A.: The magnetoviscoelastice response of elastomer composites consisting of ferrous particles embedded in a polymer matrix. J. Intell. Mater. Syst. Struct. 7, 613–622 (1996)CrossRef Jolly, M.R., Carlson, J.D., Munoz, B.C., Bullions, T.A.: The magnetoviscoelastice response of elastomer composites consisting of ferrous particles embedded in a polymer matrix. J. Intell. Mater. Syst. Struct. 7, 613–622 (1996)CrossRef
15.
go back to reference Boczkowska, A., Awietjan, S.F., Wejrzanowski, T., Kurzydlowski, K.J.: Image analysis of the microstructure of a magnetorheological elastomers. J. Mater. Sci. 44, 3135–3140 (2009)CrossRef Boczkowska, A., Awietjan, S.F., Wejrzanowski, T., Kurzydlowski, K.J.: Image analysis of the microstructure of a magnetorheological elastomers. J. Mater. Sci. 44, 3135–3140 (2009)CrossRef
16.
go back to reference Boczkowska, A., Awietjan, S.F.: Smart composites of urethane elastomers with carbonyl iron. J. Mater. Sci. 44, 4104–4111 (2009)CrossRef Boczkowska, A., Awietjan, S.F.: Smart composites of urethane elastomers with carbonyl iron. J. Mater. Sci. 44, 4104–4111 (2009)CrossRef
17.
go back to reference McIntyre, J., Jerrams, S., Steinke, E., Maslak, A., Wagner, P., Möwes, M., Alshuth, T., Schuster, R.: Optimisation and characterisation of magnetorheological elastomer. In: Jerrams, S., Murphy, N. (eds.) Constitutive Models for Rubber VII. CRC Press/Balkema, Leiden (2011), pp. 313–317CrossRef McIntyre, J., Jerrams, S., Steinke, E., Maslak, A., Wagner, P., Möwes, M., Alshuth, T., Schuster, R.: Optimisation and characterisation of magnetorheological elastomer. In: Jerrams, S., Murphy, N. (eds.) Constitutive Models for Rubber VII. CRC Press/Balkema, Leiden (2011), pp. 313–317CrossRef
18.
go back to reference Abraham, F.: The Influence of Minimum Stress on the Fatigue Life of Non Strain-Crystallising Elastomers. PhD thesis, Coventry University, Coventry (2002) Abraham, F.: The Influence of Minimum Stress on the Fatigue Life of Non Strain-Crystallising Elastomers. PhD thesis, Coventry University, Coventry (2002)
19.
go back to reference Lokander, M., Reitberger, T., Stenberg, B.: Oxidation of natural rubber-based magnetorheological elastomers. Polym. Degrad. Stab. 86, 467–471 (2004)CrossRef Lokander, M., Reitberger, T., Stenberg, B.: Oxidation of natural rubber-based magnetorheological elastomers. Polym. Degrad. Stab. 86, 467–471 (2004)CrossRef
20.
go back to reference Keller, R.W.: Oxidation and ozonation of rubber. Rubber Chem. Technol. 58, 637–652 (1985)CrossRef Keller, R.W.: Oxidation and ozonation of rubber. Rubber Chem. Technol. 58, 637–652 (1985)CrossRef
21.
go back to reference Lee, L.-H.: Mechanisms of oxidative degradation I. Oxidation of synthetic rubbers catalyzed by metallic ions. J. Appl. Polym. Sci. 10, 1699–1715 (1966)CrossRef Lee, L.-H.: Mechanisms of oxidative degradation I. Oxidation of synthetic rubbers catalyzed by metallic ions. J. Appl. Polym. Sci. 10, 1699–1715 (1966)CrossRef
22.
go back to reference Zhou, Y., Jerrams, S., Chen, L.: The effect of microstructure on the dynamic equi-biaxial fatigue behaviour of magnetorheological elastomers. In: Gil-Negrete, N., Alonso, A. (eds.) Constitutive Models for Rubber VIII. CRC Press, Boca Raton (2013), pp. 683–688CrossRef Zhou, Y., Jerrams, S., Chen, L.: The effect of microstructure on the dynamic equi-biaxial fatigue behaviour of magnetorheological elastomers. In: Gil-Negrete, N., Alonso, A. (eds.) Constitutive Models for Rubber VIII. CRC Press, Boca Raton (2013), pp. 683–688CrossRef
23.
go back to reference McIntyre, J., Alshuth, T.: Crack propagation in magnetorheological elastomers (MREs). KGK Kautsch. Gummi Kunstst. 66, 29–35 (2013) McIntyre, J., Alshuth, T.: Crack propagation in magnetorheological elastomers (MREs). KGK Kautsch. Gummi Kunstst. 66, 29–35 (2013)
Metadata
Title
Development of Magnetorheological Elastomers (MREs) for Strength and Fatigue Resistance
Authors
J. McIntyre
S. Jerrams
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-41879-7_25

Premium Partners