Skip to main content
Top

2024 | OriginalPaper | Chapter

Dfp-Unet: A Biomedical Image Segmentation Method Based on Deformable Convolution and Feature Pyramid

Authors : Zengzhi Yang, Yubin Wei, Xiao Yu, Jinting Guan

Published in: Advances in Knowledge Discovery and Data Mining

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

U-net is a classic deep network framework in the field of biomedical image segmentation, which uses a U-shaped encoder and decoder structure to realize the recognition and segmentation of semantic features, but only uses the last layer of the decoder structure for the final prediction, ignoring the feature maps of different levels of semantic strength. In addition, the convolution kernel size used by U-net is fixed, which is poorly adaptable to unknown changes. Therefore, we propose Dfp-Unet based on deformable convolution and feature pyramid for biomedical image segmentation. Dfp-Unet uses the idea of feature pyramid to respectively add an additional independent path including convolution and up-sampling operations to each level of the decoder. Then, the output feature maps of all levels are concatenated to obtain the final feature map containing multiple levels of semantic information for final prediction. Besides, Dfp-Unet replaces the convolution in the down-sampling modules with a deformable convolution on the basis of U-net. To verify the performance of Dfp-Unet, four image segmentation data sets including Sunnybrook, ISIC2017, Covid19-ct-scans, and ISBI2012 are used to compare Dfp-Unet with the existing convolutional neural networks (U-net and U-net++), and the experimental results show that Dfp-Unet has high segmentation accuracy and generalization performance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Xu, Y.-Y., Yao, L.-X., Shen, H.-B.: Bioimage-based protein subcellular location prediction: a comprehensive review. Front. Comp. Sci. 12, 26–39 (2018)CrossRef Xu, Y.-Y., Yao, L.-X., Shen, H.-B.: Bioimage-based protein subcellular location prediction: a comprehensive review. Front. Comp. Sci. 12, 26–39 (2018)CrossRef
2.
go back to reference Yidong, C., Qin, Z., lan, L., Li, P., Jin, Y.: A review of deep convolutional neural networks in medical image segment. Chin. J. Health Inf. Manag. (2021) Yidong, C., Qin, Z., lan, L., Li, P., Jin, Y.: A review of deep convolutional neural networks in medical image segment. Chin. J. Health Inf. Manag. (2021)
3.
go back to reference Seo, H., et al.: Machine learning techniques for biomedical image segmentation: an overview of technical aspects and introduction to state-of-art applications. Med. Phys. 47(5), e148–e167 (2020)CrossRef Seo, H., et al.: Machine learning techniques for biomedical image segmentation: an overview of technical aspects and introduction to state-of-art applications. Med. Phys. 47(5), e148–e167 (2020)CrossRef
4.
go back to reference Pang, S., Du, A., Orgun, M.A., Yu, Z.: A novel fused convolutional neural network for biomedical image classification. Med. Biol. Eng. Comput. 57(1), 107–121 (2019)CrossRef Pang, S., Du, A., Orgun, M.A., Yu, Z.: A novel fused convolutional neural network for biomedical image classification. Med. Biol. Eng. Comput. 57(1), 107–121 (2019)CrossRef
5.
go back to reference Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)CrossRef Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)CrossRef
6.
go back to reference Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Fully Convolutional Networks for Semantic Segmentation, pp. 3431–3440. IEEE (2015) Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Fully Convolutional Networks for Semantic Segmentation, pp. 3431–3440. IEEE (2015)
7.
go back to reference Yuan, Y., Chao, M., Lo, Y.-C.: Automatic skin lesion segmentation using deep fully convolutional networks with jaccard distance. IEEE Trans. Med. Imaging 36(9), 1876–1886 (2017)CrossRef Yuan, Y., Chao, M., Lo, Y.-C.: Automatic skin lesion segmentation using deep fully convolutional networks with jaccard distance. IEEE Trans. Med. Imaging 36(9), 1876–1886 (2017)CrossRef
8.
go back to reference Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) U-net: Convolutional Networks for Biomedical Image Segmentation, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28 Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) U-net: Convolutional Networks for Biomedical Image Segmentation, pp. 234–241. Springer, Cham (2015). https://​doi.​org/​10.​1007/​978-3-319-24574-4_​28
9.
go back to reference Curiale, A.H., Colavecchia, F.D., Kaluza, P., Isoardi, R.A., Mato, G.: Automatic myocardial segmentation by using a deep learning network in cardiac MRI. In: Automatic Myocardial Segmentation by Using a Deep Learning Network in Cardiac MRI, pp. 1–6. IEEE (2017) Curiale, A.H., Colavecchia, F.D., Kaluza, P., Isoardi, R.A., Mato, G.: Automatic myocardial segmentation by using a deep learning network in cardiac MRI. In: Automatic Myocardial Segmentation by Using a Deep Learning Network in Cardiac MRI, pp. 1–6. IEEE (2017)
10.
go back to reference Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: UNet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imaging 39(6), 1856–1867 (2020)CrossRef Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: UNet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imaging 39(6), 1856–1867 (2020)CrossRef
11.
go back to reference Alom, M.Z., Hasan, M., Yakopcic, C., Taha, T.M., Asari, V.K.: Recurrent residual convolutional neural network based on u-net (r2u-net) for medical image segmentation, arXiv preprint (2018) Alom, M.Z., Hasan, M., Yakopcic, C., Taha, T.M., Asari, V.K.: Recurrent residual convolutional neural network based on u-net (r2u-net) for medical image segmentation, arXiv preprint (2018)
12.
go back to reference Ibtehaz, N., Rahman, M.S.: MultiResUNet: rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Netw. 121, 74–87 (2020)CrossRef Ibtehaz, N., Rahman, M.S.: MultiResUNet: rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Netw. 121, 74–87 (2020)CrossRef
13.
go back to reference Li, X., Chen, H., Qi, X., Dou, Q., Fu, C.-W., Heng, P.-A.: H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE Trans. Med. Imaging 37(12), 2663–2674 (2018)CrossRef Li, X., Chen, H., Qi, X., Dou, Q., Fu, C.-W., Heng, P.-A.: H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE Trans. Med. Imaging 37(12), 2663–2674 (2018)CrossRef
14.
go back to reference Lei, T., Wang, R., Zhang, Y., Wan, Y., Liu, C., Nandi, A.K.: DefED-Net: deformable encoder-decoder network for liver and liver tumor segmentation. IEEE Trans. Radiat. Plasma Med. Sci. 6(1), 68–78 (2022)CrossRef Lei, T., Wang, R., Zhang, Y., Wan, Y., Liu, C., Nandi, A.K.: DefED-Net: deformable encoder-decoder network for liver and liver tumor segmentation. IEEE Trans. Radiat. Plasma Med. Sci. 6(1), 68–78 (2022)CrossRef
15.
go back to reference Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Feature Pyramid Networks for Object Detection, pp. 2117–2125. IEEE (2017) Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Feature Pyramid Networks for Object Detection, pp. 2117–2125. IEEE (2017)
16.
go back to reference Dai, J., et al.: Deformable convolutional networks. In: Deformable Convolutional Networks, pp. 764–773. IEEE (2017) Dai, J., et al.: Deformable convolutional networks. In: Deformable Convolutional Networks, pp. 764–773. IEEE (2017)
17.
go back to reference Zhu, X., Hu, H., Lin, S., Dai, J.: Deformable convnets v2: more deformable, better results. In: Deformable Convnets v2: More Deformable, Better Results, pp. 9308–9316. IEEE (2019) Zhu, X., Hu, H., Lin, S., Dai, J.: Deformable convnets v2: more deformable, better results. In: Deformable Convnets v2: More Deformable, Better Results, pp. 9308–9316. IEEE (2019)
18.
go back to reference Moradi, S., et al.: MFP-Unet: a novel deep learning based approach for left ventricle segmentation in echocardiography. Phys. Med. 67, 58–69 (2019)CrossRef Moradi, S., et al.: MFP-Unet: a novel deep learning based approach for left ventricle segmentation in echocardiography. Phys. Med. 67, 58–69 (2019)CrossRef
19.
go back to reference Fonseca, C.G., et al.: The cardiac atlas project–an imaging database for computational modeling and statistical atlases of the heart. Bioinformatics 27(16), 2288–2295 (2011)CrossRef Fonseca, C.G., et al.: The cardiac atlas project–an imaging database for computational modeling and statistical atlases of the heart. Bioinformatics 27(16), 2288–2295 (2011)CrossRef
20.
go back to reference Codella, N.C., et al.: Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). In: Skin Lesion Analysis Toward Melanoma Detection: A Challenge at the 2017 International Symposium on Biomedical Imaging (ISBI), hosted by the International Skin Imaging Collaboration (ISIC), pp. 168–172. IEEE (2018) Codella, N.C., et al.: Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). In: Skin Lesion Analysis Toward Melanoma Detection: A Challenge at the 2017 International Symposium on Biomedical Imaging (ISBI), hosted by the International Skin Imaging Collaboration (ISIC), pp. 168–172. IEEE (2018)
21.
go back to reference Karimi, D., Salcudean, S.E.: Reducing the hausdorff distance in medical image segmentation with convolutional neural networks. IEEE Trans. Med. Imaging 39(2), 499–513 (2020)CrossRef Karimi, D., Salcudean, S.E.: Reducing the hausdorff distance in medical image segmentation with convolutional neural networks. IEEE Trans. Med. Imaging 39(2), 499–513 (2020)CrossRef
Metadata
Title
Dfp-Unet: A Biomedical Image Segmentation Method Based on Deformable Convolution and Feature Pyramid
Authors
Zengzhi Yang
Yubin Wei
Xiao Yu
Jinting Guan
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-2238-9_23

Premium Partner