Skip to main content
Top

2019 | OriginalPaper | Chapter

Diagnosis of Parkinson’s Disease in Genetic Cohort Patients via Stage-Wise Hierarchical Deep Polynomial Ensemble Learning

Authors : Haijun Lei, Hancong Li, Ahmed Elazab, Xuegang Song, Zhongwei Huang, Baiying Lei

Published in: Predictive Intelligence in Medicine

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

As a neurodegenerative disease, Parkinson’s disease (PD) has gradually become common in the elderly. Effective disease diagnosis has become increasingly important, especially in the patients with mutation of PD related gene. Due to the slight changes in the brain, it is very difficult to diagnose PD by neuroimaging techniques. In order to be more effective in assisting diagnosis, we further improve the deep polynomial network (DPN) as the hierarchical stacked DPN (HSDPN) and propose a stage-wise hierarchical deep polynomial ensemble learning (SHDPEL) framework for encoding multiple features to obtain high-level feature representations of different neuroimaging segmentation in PD diagnosis. Specifically, we train different segmentation features separately in the first stage. In next stage, different combinations of feature pairs will be used to learn the correlative information between different segmentations. We further integrate all branches by using a voting ensemble strategy for the classification. A series of experiments are performed on all the neuroimaging data to demonstrate the effectiveness of this method on the publicly available Parkinson’s Progression Marker Initiative (PPMI) dataset. The experimental results show that the method can achieve remarkable results and is superior to related methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Tysnes, O.B., Storstein, A.: Epidemiology of Parkinson’s disease. J. Neural Transm. 124, 1–5 (2017)CrossRef Tysnes, O.B., Storstein, A.: Epidemiology of Parkinson’s disease. J. Neural Transm. 124, 1–5 (2017)CrossRef
2.
go back to reference Nichols, T.E., et al.: Best practices in data analysis and sharing in neuroimaging using MRI. Nature Neurosci. 20, 299 (2017)CrossRef Nichols, T.E., et al.: Best practices in data analysis and sharing in neuroimaging using MRI. Nature Neurosci. 20, 299 (2017)CrossRef
3.
go back to reference Hernandez, D.G., Reed, X., Singleton, A.B.: Genetics in Parkinson disease: mendelian versus non-mendelian inheritance. J. Neurochem. 139, 59–74 (2016)CrossRef Hernandez, D.G., Reed, X., Singleton, A.B.: Genetics in Parkinson disease: mendelian versus non-mendelian inheritance. J. Neurochem. 139, 59–74 (2016)CrossRef
4.
5.
go back to reference Liao, S., Gao, Y., Oto, A., Shen, D.: Representation learning: a unified deep learning framework for automatic prostate MR segmentation. Med. Image Comput. Comput. Assist. Interv. 16, 254–261 (2013) Liao, S., Gao, Y., Oto, A., Shen, D.: Representation learning: a unified deep learning framework for automatic prostate MR segmentation. Med. Image Comput. Comput. Assist. Interv. 16, 254–261 (2013)
6.
go back to reference Hoo-Chang, S., Orton, M.R., Collins, D.J., Doran, S.J., Leach, M.O.: Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1930–1943 (2013)CrossRef Hoo-Chang, S., Orton, M.R., Collins, D.J., Doran, S.J., Leach, M.O.: Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1930–1943 (2013)CrossRef
7.
go back to reference Li, D.C., Liu, C.W., Hu, S.C.: A fuzzy-based data transformation for feature extraction to increase classification performance with small medical data sets. Artif. Intell. Med. 52, 45–52 (2011)CrossRef Li, D.C., Liu, C.W., Hu, S.C.: A fuzzy-based data transformation for feature extraction to increase classification performance with small medical data sets. Artif. Intell. Med. 52, 45–52 (2011)CrossRef
8.
go back to reference Lei, H., et al.: Joint detection and clinical score prediction in Parkinson’s disease via multi-modal sparse learning. Expert Syst. Appl. 80, 284–296 (2017)CrossRef Lei, H., et al.: Joint detection and clinical score prediction in Parkinson’s disease via multi-modal sparse learning. Expert Syst. Appl. 80, 284–296 (2017)CrossRef
9.
go back to reference Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 67, 301–320 (2005)MathSciNetCrossRef Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 67, 301–320 (2005)MathSciNetCrossRef
10.
go back to reference Tibshirani, R.: Regression shrinkage and selection via the lasso: a retrospective. J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 73, 273–282 (2011)MathSciNetCrossRef Tibshirani, R.: Regression shrinkage and selection via the lasso: a retrospective. J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 73, 273–282 (2011)MathSciNetCrossRef
11.
go back to reference Livni, R., Shalevshwartz, S., Shamir, O.: An algorithm for training polynomial networks. Comput. Sci. 26, 4748–4750 (2013) Livni, R., Shalevshwartz, S., Shamir, O.: An algorithm for training polynomial networks. Comput. Sci. 26, 4748–4750 (2013)
12.
go back to reference Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural Comput. 18, 1527–1554 (2006)MathSciNetCrossRef Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural Comput. 18, 1527–1554 (2006)MathSciNetCrossRef
13.
go back to reference Suk, H.I., Lee, S.W., Shen, D.: Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Struct. Funct. 220, 841–859 (2015)CrossRef Suk, H.I., Lee, S.W., Shen, D.: Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Struct. Funct. 220, 841–859 (2015)CrossRef
14.
go back to reference Marek, K., et al.: The parkinson progression marker initiative (PPMI). Prog. Neurobiol. 95, 629–635 (2011)CrossRef Marek, K., et al.: The parkinson progression marker initiative (PPMI). Prog. Neurobiol. 95, 629–635 (2011)CrossRef
15.
go back to reference Sadananthan, S.A., Zheng, W., Chee, M.W.L., Zagorodnov, V.: Skull stripping using graph cuts. Neuroimage 49, 225–239 (2010)CrossRef Sadananthan, S.A., Zheng, W., Chee, M.W.L., Zagorodnov, V.: Skull stripping using graph cuts. Neuroimage 49, 225–239 (2010)CrossRef
16.
go back to reference Fill, J.A., Flajolet, P., Kapur, N.: Singularity analysis, Hadamard products, and tree recurrences. J. Comput. Appl. Math. 174, 271–313 (2005)MathSciNetCrossRef Fill, J.A., Flajolet, P., Kapur, N.: Singularity analysis, Hadamard products, and tree recurrences. J. Comput. Appl. Math. 174, 271–313 (2005)MathSciNetCrossRef
17.
go back to reference Shi, J., Zhou, S., Liu, X., Zhang, Q., Lu, M., Wang, T.: Stacked deep polynomial network based representation learning for tumor classification with small ultrasound image dataset. Neurocomputing 194, 87–94 (2016)CrossRef Shi, J., Zhou, S., Liu, X., Zhang, Q., Lu, M., Wang, T.: Stacked deep polynomial network based representation learning for tumor classification with small ultrasound image dataset. Neurocomputing 194, 87–94 (2016)CrossRef
18.
go back to reference Zhang, D., Shen, D., Alzheimer’s disease neuroimaging initiative: multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease. NeuroImage 59, 895–907 (2012) Zhang, D., Shen, D., Alzheimer’s disease neuroimaging initiative: multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease. NeuroImage 59, 895–907 (2012)
Metadata
Title
Diagnosis of Parkinson’s Disease in Genetic Cohort Patients via Stage-Wise Hierarchical Deep Polynomial Ensemble Learning
Authors
Haijun Lei
Hancong Li
Ahmed Elazab
Xuegang Song
Zhongwei Huang
Baiying Lei
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-32281-6_15

Premium Partner