Skip to main content
Top

2019 | OriginalPaper | Chapter

Die Rolle von Dimethylether (DME) als Schlüsselbaustein synthetischer Kraftstoffe aus erneuerbaren Rohstoffen

Authors : Ulrich Arnold, Philipp Haltenort, Karla Herrera Delgado, Benjamin Niethammer, Jörg Sauer

Published in: Zukünftige Kraftstoffe

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Zusammenfassung

Zur Herstellung alternativer Kraftstoffe aus erneuerbaren Rohstoffen steht eine Reihe von Verfahren zur Verfügung und mehrere solcher Kraftstoffe haben sich schon lange am Markt etabliert [1]. Bedeutende Beispiele für diese Biokraftstoffe der ersten Generation sind Ethanol, das fermentativ aus Stärke bzw. Zuckern gewonnen wird [2], Biodiesel, aus der Umesterung von Fettsäureestern mit Methanol (Fatty Acid Methyl Esters, FAME) [3], oder hydrierte Pflanzenöle (Hydrogenated Vegetable Oils, HVO) [4]. Durch den Einsatz solcher Kraftstoffe können, im Vergleich zu konventionellen Kraftstoffen aus fossilen Quellen, CO2-Emissionen deutlich reduziert werden. Voraussetzung ist eine nachhaltige Produktion über die ganze Prozesskette hinweg, von den Einsatzstoffen bis hin zum Kraftstoff. Dies impliziert nicht nur die Verwendung erneuerbarer Rohstoffe, die nicht in Konkurrenz zu etablierten Märkten, z. B. zum Nahrungsmittelsektor stehen, sondern auch den Einsatz regenerativer Energien.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Dinjus E, Arnold U, Dahmen N, Höfer R, Wach W (2009) Green fuels – sustainable solutions for transportation. In: Höfer Rainer (Hrsg) Sustainable solutions for modern economies, Bd 4. RSC green chemistry series. RSC Publishing, Cambridge, S 125–163CrossRef Dinjus E, Arnold U, Dahmen N, Höfer R, Wach W (2009) Green fuels – sustainable solutions for transportation. In: Höfer Rainer (Hrsg) Sustainable solutions for modern economies, Bd 4. RSC green chemistry series. RSC Publishing, Cambridge, S 125–163CrossRef
2.
go back to reference Roehr M (Hrsg) (2001) The biotechnology of ethanol. Wiley-VCH, Weinheim Roehr M (Hrsg) (2001) The biotechnology of ethanol. Wiley-VCH, Weinheim
3.
go back to reference Hill K, Höfer R (2009) Natural fats and oils. In: Höfer Rainer (Hrsg) Sustainable solutions for modern economies, Bd 4. RSC green chemistry series. RSC Publishing, Cambridge, S 167–237CrossRef Hill K, Höfer R (2009) Natural fats and oils. In: Höfer Rainer (Hrsg) Sustainable solutions for modern economies, Bd 4. RSC green chemistry series. RSC Publishing, Cambridge, S 167–237CrossRef
9.
go back to reference Asinger F (1986) Methanol – chemie- und Energierohstoff. Springer, BerlinCrossRef Asinger F (1986) Methanol – chemie- und Energierohstoff. Springer, BerlinCrossRef
10.
go back to reference Olah GA, Goeppert A, Surya Prakash GK (2006) Beyond oil and gas: the methanol economy. Wiley-VCH, Weinheim Olah GA, Goeppert A, Surya Prakash GK (2006) Beyond oil and gas: the methanol economy. Wiley-VCH, Weinheim
14.
go back to reference Radtke KR, Heinritz-Adrian M, Marsico C (2006) New wave of coal-to-liquids. VGB PowerTech 86:78–84 Radtke KR, Heinritz-Adrian M, Marsico C (2006) New wave of coal-to-liquids. VGB PowerTech 86:78–84
27.
go back to reference Becker P, Arnold U, Döring M (2009) Development of catalysts for the selective synthesis of light olefins from Dimethyl Ether. In: Ernst S, Buzzoni R, Leitner W, Lercher JA, Lichtscheidl J, Nees F, Santacesaria E (Hrsg) Preprints of the DGMK-conference production and use of light olefins. DGMK, Dresden, S 127–133 Becker P, Arnold U, Döring M (2009) Development of catalysts for the selective synthesis of light olefins from Dimethyl Ether. In: Ernst S, Buzzoni R, Leitner W, Lercher JA, Lichtscheidl J, Nees F, Santacesaria E (Hrsg) Preprints of the DGMK-conference production and use of light olefins. DGMK, Dresden, S 127–133
29.
go back to reference Japan DME Forum (2007) DME handbook. Japan DME Forum, Tokyo Japan DME Forum (2007) DME handbook. Japan DME Forum, Tokyo
32.
go back to reference Salsing H, Ochoterena R, Denbratt I (2009) Performance of a heavy duty DME engine – the influence of nozzle parameters on combustion and spray development. SAE International, Technical Paper 2009-01-0841, 7176–7191. https://doi.org/10.4271/2009-01-084 Salsing H, Ochoterena R, Denbratt I (2009) Performance of a heavy duty DME engine – the influence of nozzle parameters on combustion and spray development. SAE International, Technical Paper 2009-01-0841, 7176–7191. https://​doi.​org/​10.​4271/​2009-01-084
35.
go back to reference Matsumoto R, Ozawa M, Terada S, Iio T (2007) Low NOx combustion of DME by means of flue gas recirculation. In: Cen K, Chi Y, Wang F (Hrsg) Challenges of power engineering and environment. Springer, Berlin, S 1247–1251CrossRef Matsumoto R, Ozawa M, Terada S, Iio T (2007) Low NOx combustion of DME by means of flue gas recirculation. In: Cen K, Chi Y, Wang F (Hrsg) Challenges of power engineering and environment. Springer, Berlin, S 1247–1251CrossRef
40.
go back to reference Ströfer E, Blagov S, Hasse H, Schelling H (2006) Verfahren zur Herstellung von Polyoxymethylendialkylethern aus Trioxan und Dialkylether, World Patent No. 2006/134081 Ströfer E, Blagov S, Hasse H, Schelling H (2006) Verfahren zur Herstellung von Polyoxymethylendialkylethern aus Trioxan und Dialkylether, World Patent No. 2006/134081
41.
go back to reference Arnold U, Lautenschütz L, Oestreich D, Sauer J (2015) Production of oxygenate fuels from biomass-derived synthesis gas. DGMK Tagungsbericht. Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle e. V., Hamburg, S 127–136 Arnold U, Lautenschütz L, Oestreich D, Sauer J (2015) Production of oxygenate fuels from biomass-derived synthesis gas. DGMK Tagungsbericht. Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle e. V., Hamburg, S 127–136
44.
go back to reference Behrens M, Studt F, Kasatkin I, Kühl S, Hävecker M, Abild-Pedersen F, Zander S, Girgsdies F, Kurr P, Kniep B-L, Tovar M, Fischer RW, Nørskov JK, Schlögl R (2012) The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 336:893–897. https://doi.org/10.1126/science.1219831CrossRef Behrens M, Studt F, Kasatkin I, Kühl S, Hävecker M, Abild-Pedersen F, Zander S, Girgsdies F, Kurr P, Kniep B-L, Tovar M, Fischer RW, Nørskov JK, Schlögl R (2012) The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 336:893–897. https://​doi.​org/​10.​1126/​science.​1219831CrossRef
58.
go back to reference D.M.E.F. Japan (2011) DME handbook supplement. Japan DME Forum, Tokyo D.M.E.F. Japan (2011) DME handbook supplement. Japan DME Forum, Tokyo
70.
go back to reference Grope N, Schröder O, Krahl J, Müller-Langer J, Schröder J, Mattheß E (2018) Survey on advanced fuels for advanced engines, project report funded by IEA bioenergy Task 39, commercializing conventional and advanced liquid biofuels from biomass Grope N, Schröder O, Krahl J, Müller-Langer J, Schröder J, Mattheß E (2018) Survey on advanced fuels for advanced engines, project report funded by IEA bioenergy Task 39, commercializing conventional and advanced liquid biofuels from biomass
80.
go back to reference Le Bel JA, Greene WH (1880) On the decomposition of alcohols, etc., by zinc chloride at high temperatures. Amer Chem J 2:20–26 Le Bel JA, Greene WH (1880) On the decomposition of alcohols, etc., by zinc chloride at high temperatures. Amer Chem J 2:20–26
81.
go back to reference Meisel SL, McCullough JP, Lechthaler CH, Weisz PB (1976) Gasoline from methanol in one step. CHEMTECH (United States) 6(2):86–89 Meisel SL, McCullough JP, Lechthaler CH, Weisz PB (1976) Gasoline from methanol in one step. CHEMTECH (United States) 6(2):86–89
83.
go back to reference Argauer RJ, Landolt GR (1972) Crystallite zeolite ZSM-5 and method of preparing the same, U.S. Patent No. 3,702,886 Argauer RJ, Landolt GR (1972) Crystallite zeolite ZSM-5 and method of preparing the same, U.S. Patent No. 3,702,886
84.
go back to reference Chang CD, Silvestri AJ (1987) MTG – origin, evolution, operation. ChemTech 17(10):624–631 Chang CD, Silvestri AJ (1987) MTG – origin, evolution, operation. ChemTech 17(10):624–631
87.
go back to reference Penick JE, Lee W, Maziuk J (1982) Development of the methanol-to-gasoline process, chemical reaction engineering – plenary lectures. In: Wei J, Georgakis C (Hrsg) 7th international symposium on chemical reaction engineering in Boston, Massachusetts, Oct. 4–6, American Chemical Society, 1981 Penick JE, Lee W, Maziuk J (1982) Development of the methanol-to-gasoline process, chemical reaction engineering – plenary lectures. In: Wei J, Georgakis C (Hrsg) 7th international symposium on chemical reaction engineering in Boston, Massachusetts, Oct. 4–6, American Chemical Society, 1981
89.
90.
92.
go back to reference Grimmer HR, Thiagarajan N, Nitschke E (1988) Conversion of methanol to liquid fuels by the fluid bed Mobil process (a commercial concept). In: Bibby DM, Chang CD, Howe RF, Yurchak S (Hrsg) Methane conversion. Studies in surface science and catalysis, Bd 36. Elsevier, Amsterdam, S 273–291. https://doi.org/10.1016/s0167-2991(09)60522-x Grimmer HR, Thiagarajan N, Nitschke E (1988) Conversion of methanol to liquid fuels by the fluid bed Mobil process (a commercial concept). In: Bibby DM, Chang CD, Howe RF, Yurchak S (Hrsg) Methane conversion. Studies in surface science and catalysis, Bd 36. Elsevier, Amsterdam, S 273–291. https://​doi.​org/​10.​1016/​s0167-2991(09)60522-x
99.
go back to reference Kaiser SW (1985a) Production of light Olefins, U.S. Patent No. 4,499,327 Kaiser SW (1985a) Production of light Olefins, U.S. Patent No. 4,499,327
100.
go back to reference Kaiser SW (1985b) Production of hydrocarbons with aluminophosphate molecular sieves, U.S. Patent No. 4,524,234 Kaiser SW (1985b) Production of hydrocarbons with aluminophosphate molecular sieves, U.S. Patent No. 4,524,234
101.
go back to reference Tabak SA, Krambeck FJ (1985) Shaping process makes fuels. Hydrocarbon Process (United States) 64(9):72–74 Tabak SA, Krambeck FJ (1985) Shaping process makes fuels. Hydrocarbon Process (United States) 64(9):72–74
103.
104.
go back to reference Topp-Jørgensen J, Rostrup-Nielsen JR (1986) Integrated process offers lower gas-to-gasoline investment. Oil Gas J (United States) 84(20):68–69 Topp-Jørgensen J, Rostrup-Nielsen JR (1986) Integrated process offers lower gas-to-gasoline investment. Oil Gas J (United States) 84(20):68–69
106.
go back to reference Gorinm E, Gorin MH (1948) Conversion of dimethyl ether, U.S. Patent No. 2,456,584 Gorinm E, Gorin MH (1948) Conversion of dimethyl ether, U.S. Patent No. 2,456,584
110.
go back to reference Lee S, Gogate MR, Fullerton KL, Kulik CJ (1995) Catalytic process for production of gasoline from synthesis gas, U.S. Patent No. 5,459,166 Lee S, Gogate MR, Fullerton KL, Kulik CJ (1995) Catalytic process for production of gasoline from synthesis gas, U.S. Patent No. 5,459,166
111.
go back to reference Sardesai A, Lee S (1998) Hydrocarbon synthesis from dimethyl ether over ZSM-5 catalyst, Papers of the American Chemical Society Sardesai A, Lee S (1998) Hydrocarbon synthesis from dimethyl ether over ZSM-5 catalyst, Papers of the American Chemical Society
112.
go back to reference Helton T, Hindman M (2014) Methanol to Gasoline – an alternative for liquid fuel production, GTL technology forum 2014, Houston Helton T, Hindman M (2014) Methanol to Gasoline – an alternative for liquid fuel production, GTL technology forum 2014, Houston
113.
go back to reference Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing directives 2001/77/EC and 2003/30/EC. Off J EU, 2009, L140, 16 Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing directives 2001/77/EC and 2003/30/EC. Off J EU, 2009, L140, 16
114.
go back to reference Directive 2012/0288 (COD) of the European Parliament and of the council of 17 October 2012 amending directive 98/70/EC relating to the quality of petrol and diesel fuels and amending directive 2009/28/EC on the promotion of the use of energy from renewable sources. Off J EU, 2012, L 140 Directive 2012/0288 (COD) of the European Parliament and of the council of 17 October 2012 amending directive 98/70/EC relating to the quality of petrol and diesel fuels and amending directive 2009/28/EC on the promotion of the use of energy from renewable sources. Off J EU, 2012, L 140
116.
go back to reference Buchanan JS, Brown SH, DeCaul LC, Loveless BT, Vijay R, McCarthy SJ, Daage M, Shekhar M (2017) Production of aromatics from methanol and co-feeds, U.S. Patent No. 9,732,013 Buchanan JS, Brown SH, DeCaul LC, Loveless BT, Vijay R, McCarthy SJ, Daage M, Shekhar M (2017) Production of aromatics from methanol and co-feeds, U.S. Patent No. 9,732,013
117.
go back to reference Heyward MP, Young D (1985) Catalyst composition for conversion of synthesis gas to hydrocarbons, U.S. Patent No. 4,543,347 Heyward MP, Young D (1985) Catalyst composition for conversion of synthesis gas to hydrocarbons, U.S. Patent No. 4,543,347
118.
go back to reference Bockhorn H (Hrsg) (1994) Soot formation in combustion. Springer, Berlin Bockhorn H (Hrsg) (1994) Soot formation in combustion. Springer, Berlin
120.
go back to reference Bahreini R, Middlebrook AM, de Gouw JA, Warneke C, Trainer M, Brock CA, Stark H, Brown SS, Dube WP, Gilman JB, Hall K, Holloway JS, Kuster WC, Perring AE, Prevot ASH, Schwarz JP, Spackman JR, Szidat S, Wagner NL, Weber RJ, Zotter P, Parrish D (2012) Gasoline emissions dominate over diesel in formation of secondary organic aerosol mass. Geophys Res Lett 39(6). https://doi.org/10.1029/2011gl050718 Bahreini R, Middlebrook AM, de Gouw JA, Warneke C, Trainer M, Brock CA, Stark H, Brown SS, Dube WP, Gilman JB, Hall K, Holloway JS, Kuster WC, Perring AE, Prevot ASH, Schwarz JP, Spackman JR, Szidat S, Wagner NL, Weber RJ, Zotter P, Parrish D (2012) Gasoline emissions dominate over diesel in formation of secondary organic aerosol mass. Geophys Res Lett 39(6). https://​doi.​org/​10.​1029/​2011gl050718
121.
go back to reference Assessing the effect of five gasoline properties on exhaust emissions from light-duty vehicles certified to Tier 2 standards: analysis of data from EPAct Phase 3 (EPAct/V2/E-89), U.S. Environmental protection agency, Document number EPA-420-R-13-002, 2013 Assessing the effect of five gasoline properties on exhaust emissions from light-duty vehicles certified to Tier 2 standards: analysis of data from EPAct Phase 3 (EPAct/V2/E-89), U.S. Environmental protection agency, Document number EPA-420-R-13-002, 2013
122.
128.
go back to reference Ahn JA, Temel B, Iglesia E (2010) Process for production of triptane and triptene, U.S. Patent No. 7,825,287 Ahn JA, Temel B, Iglesia E (2010) Process for production of triptane and triptene, U.S. Patent No. 7,825,287
130.
go back to reference Tan ECD, Talmadge M, Dutta A, Hensley J, Snowden-Swan LJ, Humbrid D, Schaidle J, Biddy M (2016) Conceptual process design and economics for the production of high-octane gasoline blendstock via indirect liquefaction of biomass through methanol/dimethyl ether intermediates, biofuels. Bioprod Bioref 10:17–35. https://doi.org/10.1002/bbb.1611CrossRef Tan ECD, Talmadge M, Dutta A, Hensley J, Snowden-Swan LJ, Humbrid D, Schaidle J, Biddy M (2016) Conceptual process design and economics for the production of high-octane gasoline blendstock via indirect liquefaction of biomass through methanol/dimethyl ether intermediates, biofuels. Bioprod Bioref 10:17–35. https://​doi.​org/​10.​1002/​bbb.​1611CrossRef
131.
136.
143.
go back to reference Deutz S, Bongartz D, Heuser B, Kätelhön A, Schulze Langenhorst L, Omari A, Walters M, Klankermayer J, Leitner W, Mitsos A, Pischinger S (2018) Cleaner production of cleaner fuels. Wind-to-wheel – environmental assessment of CO2-based oxymethylene ether as a drop-in fuel. Energy Environ Sci 11:331–343. https://doi.org/10.1039/c7ee01657cCrossRef Deutz S, Bongartz D, Heuser B, Kätelhön A, Schulze Langenhorst L, Omari A, Walters M, Klankermayer J, Leitner W, Mitsos A, Pischinger S (2018) Cleaner production of cleaner fuels. Wind-to-wheel – environmental assessment of CO2-based oxymethylene ether as a drop-in fuel. Energy Environ Sci 11:331–343. https://​doi.​org/​10.​1039/​c7ee01657cCrossRef
146.
go back to reference Mitsushma H, Murakami T, (1972) Tadenuma H process for producing formaldehyde, U.S. Patent No. 3,655,771 Mitsushma H, Murakami T, (1972) Tadenuma H process for producing formaldehyde, U.S. Patent No. 3,655,771
147.
go back to reference Lewis RM, Slaugh LH (1984) Conversion of dimethyl ether to formaldehyde, U.S. Patent No. 4,435,602 Lewis RM, Slaugh LH (1984) Conversion of dimethyl ether to formaldehyde, U.S. Patent No. 4,435,602
148.
go back to reference Lewis RM, Ryan RC, Slaugh LH (1984a) Conversion of dimethyl ether to formaldehyde using Bi-Mo-Cu catalyst, U.S. Patent No. 4,439,624 Lewis RM, Ryan RC, Slaugh LH (1984a) Conversion of dimethyl ether to formaldehyde using Bi-Mo-Cu catalyst, U.S. Patent No. 4,439,624
149.
go back to reference Lewis RM, Ryan RC, Slaugh LH (1984b) Conversion of dimethyl ether to formaldehyde using Bi-Mo-Fe catalyst, U.S. Patent No. 4,442,307 Lewis RM, Ryan RC, Slaugh LH (1984b) Conversion of dimethyl ether to formaldehyde using Bi-Mo-Fe catalyst, U.S. Patent No. 4,442,307
154.
go back to reference Hagen GP, Spangler MJ (1999) Preparation of polyoxymethylene dimethyl ethers by catalytic conversion of dimethyl ether with formaldehyde formed by oxy-dehydrogenation of dimethyl ether, U.S. Patent No. 5,959,156 Hagen GP, Spangler MJ (1999) Preparation of polyoxymethylene dimethyl ethers by catalytic conversion of dimethyl ether with formaldehyde formed by oxy-dehydrogenation of dimethyl ether, U.S. Patent No. 5,959,156
155.
go back to reference Hagen GP, Spangler MJ (2000) Preparation of polyoxymethylene dimethyl ethers by catalytic conversion of dimethyl ether with formaldehyde formed by dehydrogenation of dimethyl ether, U.S. Patent No. 6,160,186 Hagen GP, Spangler MJ (2000) Preparation of polyoxymethylene dimethyl ethers by catalytic conversion of dimethyl ether with formaldehyde formed by dehydrogenation of dimethyl ether, U.S. Patent No. 6,160,186
156.
go back to reference Hagen GP, Spangler MJ (2001) Preparation of polyoxymethylene dimethyl ethers by acid-activated catalytic conversion of methanol with formaldehyde formed by oxy-dehydrogenation of dimethyl ether, U.S. Patent No. 6,265,528 Hagen GP, Spangler MJ (2001) Preparation of polyoxymethylene dimethyl ethers by acid-activated catalytic conversion of methanol with formaldehyde formed by oxy-dehydrogenation of dimethyl ether, U.S. Patent No. 6,265,528
157.
go back to reference Hagen GP, Spangler MJ (2002) Preparation of polyoxymethylene dimethyl ethers by catalytic conversion of formaldehyde formed by oxidation of dimethyl ether, U.S. Patent No. 6,392,102 Hagen GP, Spangler MJ (2002) Preparation of polyoxymethylene dimethyl ethers by catalytic conversion of formaldehyde formed by oxidation of dimethyl ether, U.S. Patent No. 6,392,102
158.
go back to reference Hagen GP, Spangler MJ (2003) Preparation of polyoxymethylene dimethyl ethers by catalytic conversion of formaldehyde formed by oxy-dehydrogenation of dimethyl ether, U.S. Patent No. 2003/171534 Hagen GP, Spangler MJ (2003) Preparation of polyoxymethylene dimethyl ethers by catalytic conversion of formaldehyde formed by oxy-dehydrogenation of dimethyl ether, U.S. Patent No. 2003/171534
164.
go back to reference Peter A, Fehr SM, Dybbert V, Himmel D, Lindner I, Jacob E, Ouda M, Schaadt A, White RJ, Scherer H, Krossing I (2018) Towards a sustainable synthesis of oxymethylene dimethyl ether by homogeneous catalysis and uptake of molecular formaldehyde, Angew. Chem Int Edit 57:9461–9464. https://doi.org/10.1002/anie.201802247 Peter A, Fehr SM, Dybbert V, Himmel D, Lindner I, Jacob E, Ouda M, Schaadt A, White RJ, Scherer H, Krossing I (2018) Towards a sustainable synthesis of oxymethylene dimethyl ether by homogeneous catalysis and uptake of molecular formaldehyde, Angew. Chem Int Edit 57:9461–9464. https://​doi.​org/​10.​1002/​anie.​201802247
165.
go back to reference Gao H, He X, Liu Z (2013) Preparation method of polymethoxy acetal, Chinese Patent No. 103,121,926 Gao H, He X, Liu Z (2013) Preparation method of polymethoxy acetal, Chinese Patent No. 103,121,926
166.
go back to reference Chen K, He X, Tao W, Teng J, Yuan Z (2013) Polyformaldehyde dimethyl ether preparation method, Chinese Patent No. 103,420,813 Chen K, He X, Tao W, Teng J, Yuan Z (2013) Polyformaldehyde dimethyl ether preparation method, Chinese Patent No. 103,420,813
167.
go back to reference He X, Teng J, Yuan Z (2013) Polymethoxy dimethyl ether preparation method, Chinese Patent No. 103,420,814 He X, Teng J, Yuan Z (2013) Polymethoxy dimethyl ether preparation method, Chinese Patent No. 103,420,814
168.
go back to reference He X, Teng J, Yuan Z (2014a) Preparation method of polyoxy methylene dimethyl ether, Chinese Patent No. 103,539,644 He X, Teng J, Yuan Z (2014a) Preparation method of polyoxy methylene dimethyl ether, Chinese Patent No. 103,539,644
169.
go back to reference He X, Teng J, Yuan Z (2014b) Preparation method of polymethoxy methylal, Chinese Patent No. 103,539,645 He X, Teng J, Yuan Z (2014b) Preparation method of polymethoxy methylal, Chinese Patent No. 103,539,645
170.
go back to reference Gao H, He X, Liu X (2013) Preparation method of polyformaldehyde dimethyl ether, Chinese Patent No. 103,121,924 Gao H, He X, Liu X (2013) Preparation method of polyformaldehyde dimethyl ether, Chinese Patent No. 103,121,924
171.
go back to reference Fang D, Liu D, Tang B, Zhang J (2014) Method for preparing polyoxymethylene dimethyl ethers, Chinese Patent No. 103,508,859 Fang D, Liu D, Tang B, Zhang J (2014) Method for preparing polyoxymethylene dimethyl ethers, Chinese Patent No. 103,508,859
172.
go back to reference Fu W, He M, Liang X, Wang Y (2014) Synthesis method of polyformaldehyde dimethyl ether, Chinese Patent No. 104,177,237 Fu W, He M, Liang X, Wang Y (2014) Synthesis method of polyformaldehyde dimethyl ether, Chinese Patent No. 104,177,237
177.
go back to reference Zhang X, Li J, Ni X, Yin Z, Liu Q (2016) Development of the synthesis technology of polyoxymethylene dimethyl ethers. Chem Ind Press 35(7):2293–2298 Zhang X, Li J, Ni X, Yin Z, Liu Q (2016) Development of the synthesis technology of polyoxymethylene dimethyl ethers. Chem Ind Press 35(7):2293–2298
Metadata
Title
Die Rolle von Dimethylether (DME) als Schlüsselbaustein synthetischer Kraftstoffe aus erneuerbaren Rohstoffen
Authors
Ulrich Arnold
Philipp Haltenort
Karla Herrera Delgado
Benjamin Niethammer
Jörg Sauer
Copyright Year
2019
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-58006-6_22

Premium Partner