Skip to main content
Top

2013 | OriginalPaper | Chapter

2. Dielectric, Mechanical, and Electromechanical Properties of Ferroelectrics and Piezoelectrics

Authors : Spartak Gevorgian, Alexander K. Tagantsev, Andrei Vorobiev

Published in: Tuneable Film Bulk Acoustic Wave Resonators

Publisher: Springer London

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter introduces the fundamentals of dielectric, mechanical, and electromechanical properties of insulating solids, primarily focusing on ferroelectric and piezoelectric materials, suitable for FBARs. Sections 2.1, 2.2, and 2.3 address these properties, neglecting the energy dissipation associated with AC signals, whereas Sect. 2.4 is reserved for the discussion of effects related to the energy dissipation (e.g. dielectric and acoustic loss).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Here, this function is called « free energy density » as often done in literature. However, this is a proper name for \( F + P_{i} E_{i} \).
 
2
Here, a ferroelectric exhibiting two domain states is considered. Hence, Fig. 2.6b gives an example of a multi-domain configuration consisting of two domain states. Often, ferroelectrics exhibit more than two domain states. In this case, the domain configurations can consist of more than two domain states.
 
3
Such equation is valid for piezoelectrics as well. In this case, it should be derived from the set of electromechanical constitutive equations (2.87) by eliminating the electrical variables \( E \) and \( D \). The additional relationship between these variables needed for such procedure is controlled by the electrical conditions in the medium (e.g., short-circuit).
 
Literature
go back to reference Baniecki JD, Laibowitz RB, Shaw TM et al (1998) Dielectric relaxation of Ba0.7Sr0.3TiO3 thin films from 1 mHz to 20 GHz. Appl Phys Lett 72:498–500CrossRef Baniecki JD, Laibowitz RB, Shaw TM et al (1998) Dielectric relaxation of Ba0.7Sr0.3TiO3 thin films from 1 mHz to 20 GHz. Appl Phys Lett 72:498–500CrossRef
go back to reference Brown B, Aaron M (2001) The politics of nature. In: Smith J (ed) The rise of modern genomics, 3rd edn. Wiley, New York Brown B, Aaron M (2001) The politics of nature. In: Smith J (ed) The rise of modern genomics, 3rd edn. Wiley, New York
go back to reference Chase DR et al (2005) Modelling the Capacitive Nonlinearity in Thin Film BST Varactors. IEEE Trans Micr Theory Tech 53:3215–3220CrossRef Chase DR et al (2005) Modelling the Capacitive Nonlinearity in Thin Film BST Varactors. IEEE Trans Micr Theory Tech 53:3215–3220CrossRef
go back to reference Damjanovic D (2005) Hysteresis in piezoelectric and ferroelectric materials. In: Bertotti G, Mayergoyz I (eds) Science of hysteresis. Elsevier, Amsterdam Damjanovic D (2005) Hysteresis in piezoelectric and ferroelectric materials. In: Bertotti G, Mayergoyz I (eds) Science of hysteresis. Elsevier, Amsterdam
go back to reference Fukuda Y, Numata K, Aoki K et al (1996) Origin of dielectric relaxation observed for Ba0.5Sr0.5TiO3 thin-film capacitor. Jpn J Appl Phys 35:5178CrossRef Fukuda Y, Numata K, Aoki K et al (1996) Origin of dielectric relaxation observed for Ba0.5Sr0.5TiO3 thin-film capacitor. Jpn J Appl Phys 35:5178CrossRef
go back to reference Gurevich VL (1986) Transport in Phonon Systems. North-Holland, Amsterdam Gurevich VL (1986) Transport in Phonon Systems. North-Holland, Amsterdam
go back to reference Gurevich VL, Tagantsev AK (1991) Intrinsic dielectric loss in crystals. Adv Phys 40:719–767CrossRef Gurevich VL, Tagantsev AK (1991) Intrinsic dielectric loss in crystals. Adv Phys 40:719–767CrossRef
go back to reference Holland R (1967) Representation of dielectric, elastic, and piezoelectric losses by complex coefficients. IEEE Trans Sonics Ultrason SU-14:18-20 Holland R (1967) Representation of dielectric, elastic, and piezoelectric losses by complex coefficients. IEEE Trans Sonics Ultrason SU-14:18-20
go back to reference Jonscher AK (1996) Universal relaxation law. Chelsea Dielectrics Press, London Jonscher AK (1996) Universal relaxation law. Chelsea Dielectrics Press, London
go back to reference Landau LD, Lifshitz EM, Pitaevskii LP (1984) Electrodynamics of Continuous Media, 2nd edn. Pergamon Press, Oxford Landau LD, Lifshitz EM, Pitaevskii LP (1984) Electrodynamics of Continuous Media, 2nd edn. Pergamon Press, Oxford
go back to reference Muralt P, Conde J, Arteida A et al (2009) Piezoelectric materials parameters for piezoelectric thin films in GHz applications. Int J Microwave Wirel Technol 1:19–27CrossRef Muralt P, Conde J, Arteida A et al (2009) Piezoelectric materials parameters for piezoelectric thin films in GHz applications. Int J Microwave Wirel Technol 1:19–27CrossRef
go back to reference Noeth A, Yamada T, Sherman VO et al (2007) Tuning of direct current bias-induced resonances in micromachined Ba0.3Sr0.7TiO3 thin-film capacitors. J Appl Phys 102:114110CrossRef Noeth A, Yamada T, Sherman VO et al (2007) Tuning of direct current bias-induced resonances in micromachined Ba0.3Sr0.7TiO3 thin-film capacitors. J Appl Phys 102:114110CrossRef
go back to reference Nye JF (1985) Physical properties of crystals: their representation by tensors and matrices. Oxford University Press, New York Nye JF (1985) Physical properties of crystals: their representation by tensors and matrices. Oxford University Press, New York
go back to reference Pertsev NA, Zembilgotov AG, Tagantsev AK (1998) Effect of mechanical boundary conditions on the phase diagrams of epitaxial ferroelectric thin films. Phys Rev Lett 80:1988–1991CrossRef Pertsev NA, Zembilgotov AG, Tagantsev AK (1998) Effect of mechanical boundary conditions on the phase diagrams of epitaxial ferroelectric thin films. Phys Rev Lett 80:1988–1991CrossRef
go back to reference Smolenskii GA, Isupov VA (1954) Zhurnal Tekhnicheskoi Fiziki, 24:1375 Smolenskii GA, Isupov VA (1954) Zhurnal Tekhnicheskoi Fiziki, 24:1375
go back to reference Tagantsev AK (1984) Dielectric losses in displacive ferroelectrics. Sov Phys JETP 59:1290–1297 Tagantsev AK (1984) Dielectric losses in displacive ferroelectrics. Sov Phys JETP 59:1290–1297
go back to reference Tagantsev AK, Cross LE, Fousek J (2010) Domains in ferroic crystals and thin films. Springer, New YorkCrossRef Tagantsev AK, Cross LE, Fousek J (2010) Domains in ferroic crystals and thin films. Springer, New YorkCrossRef
go back to reference Tagantsev AK, Sherman VO, Astafiev KF et al (2003) Ferroelectric materials for microwave tuneable applications. J Electroceram 11:5–66CrossRef Tagantsev AK, Sherman VO, Astafiev KF et al (2003) Ferroelectric materials for microwave tuneable applications. J Electroceram 11:5–66CrossRef
go back to reference Tagantsev AK (1982) On the dielectric relaxation and thermopolarization effect in crystals, PhD thesis, Ioffe Institute, Leningrad, Russia Tagantsev AK (1982) On the dielectric relaxation and thermopolarization effect in crystals, PhD thesis, Ioffe Institute, Leningrad, Russia
go back to reference Vendik OG, Hollmann EK, Kozyrev AB et al (1999) Ferroelectric tuning of planar and bulk microwave devices. J Supercond 1 5–338CrossRef Vendik OG, Hollmann EK, Kozyrev AB et al (1999) Ferroelectric tuning of planar and bulk microwave devices. J Supercond 1 5–338CrossRef
go back to reference Vendik OG, Zubko SP (1997) Modeling the dielectric response of incipient ferroelectrics. J Appl Phys 82:4475–4483CrossRef Vendik OG, Zubko SP (1997) Modeling the dielectric response of incipient ferroelectrics. J Appl Phys 82:4475–4483CrossRef
go back to reference Vorobiev A, Gevorgian S (2010) Tuneable thin film bulk acoustic wave resonators with improved Q-factor. Appl Phys Lett 96:212904CrossRef Vorobiev A, Gevorgian S (2010) Tuneable thin film bulk acoustic wave resonators with improved Q-factor. Appl Phys Lett 96:212904CrossRef
go back to reference Waser R (1995) Polarisation, conduction, and breakdown in non-ferroelectric perovskite thin films. In: Auciello O, Waser R (eds) Science and technology of electroceramic thin films. Birkhäuser Verlag, Basel Waser R (1995) Polarisation, conduction, and breakdown in non-ferroelectric perovskite thin films. In: Auciello O, Waser R (eds) Science and technology of electroceramic thin films. Birkhäuser Verlag, Basel
Metadata
Title
Dielectric, Mechanical, and Electromechanical Properties of Ferroelectrics and Piezoelectrics
Authors
Spartak Gevorgian
Alexander K. Tagantsev
Andrei Vorobiev
Copyright Year
2013
Publisher
Springer London
DOI
https://doi.org/10.1007/978-1-4471-4944-6_2