Skip to main content
Top
Published in: Designs, Codes and Cryptography 2/2022

28-01-2022

Difference matrices with five rows over finite abelian groups

Authors: Rong Pan, R. Julian R. Abel, Yudhistira A. Bunjamin, Tao Feng, Tiana J. Tsang Ung, Xiaomiao Wang

Published in: Designs, Codes and Cryptography | Issue 2/2022

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Let G be a finite group and \(k\geqslant 2\) be an integer. A (Gk, 1)-difference matrix (DM) is a \(k\times |G|\) matrix \(D=(d_{ij})\) with entries from G, such that for all distinct rows x and y, the multiset of differences \(\{d_{xi} d_{yi}^{-1}:1\leqslant i\leqslant |G|\}\) contains each element of G exactly once. This paper examines the existence of difference matrices with five rows over a finite abelian group. It is proved that if G is a finite abelian group and the Sylow 2-subgroup of G is trivial or noncyclic, then a (G, 5, 1)-DM exists, except for \(G \in \{{\mathbb {Z}}_3,\) \({\mathbb {Z}}_2 \oplus {\mathbb {Z}}_2,\) \({\mathbb {Z}}_4 \oplus {\mathbb {Z}}_2,\) \({\mathbb {Z}}_9\}\) and possibly for some groups whose Sylow 2-subgroup lies in \(\{{\mathbb {Z}}_2\oplus {\mathbb {Z}}_2\), \({\mathbb {Z}}_4\oplus {\mathbb {Z}}_2\), \({\mathbb {Z}}_{32} \oplus {\mathbb {Z}}_{2},\) \({\mathbb {Z}}_{16} \oplus {\mathbb {Z}}_{4}\}\), and some cyclic groups of order 9p with p prime.
Appendix
Available only for authorised users
Literature
2.
go back to reference Abel R.J.R., Bennett F.E.: Quintesssential PBDs and PBDs with prime power block sizes \(\ge 8\). J. Comb. Des. 13, 239–267 (2005).CrossRef Abel R.J.R., Bennett F.E.: Quintesssential PBDs and PBDs with prime power block sizes \(\ge 8\). J. Comb. Des. 13, 239–267 (2005).CrossRef
3.
go back to reference Abel R.J.R., Bennett F.E., Ge G.: Super-simple holey Steiner pentagon systems and related designs. J. Comb. Des. 16, 301–328 (2008).MathSciNetCrossRef Abel R.J.R., Bennett F.E., Ge G.: Super-simple holey Steiner pentagon systems and related designs. J. Comb. Des. 16, 301–328 (2008).MathSciNetCrossRef
4.
go back to reference Abel R.J.R.: Existence of \(t\) strongly symmetric pairwise orthogonal Latin squares for \(t \in \{3,4,5\}\). Australas. J. Comb. 72, 306–328 (2018).MathSciNetMATH Abel R.J.R.: Existence of \(t\) strongly symmetric pairwise orthogonal Latin squares for \(t \in \{3,4,5\}\). Australas. J. Comb. 72, 306–328 (2018).MathSciNetMATH
5.
6.
go back to reference Abel R.J.R., Combe D., Palmer W.D.: Generalized Bhaskar Rao designs and dihedral groups. J. Comb. Theory Ser. A 106, 145–157 (2004).MathSciNetCrossRef Abel R.J.R., Combe D., Palmer W.D.: Generalized Bhaskar Rao designs and dihedral groups. J. Comb. Theory Ser. A 106, 145–157 (2004).MathSciNetCrossRef
7.
go back to reference Abel R.J.R., Colbourn C.J., Dinitz J.H.: Mutually orthogonal Latin squares (MOLS). In: Colbourn C.J., Dinitz J.H. (eds.) CRC Handbook of Combinatorial Designs, pp. 160–193. CRC Press, Boca Raton (2007).MATH Abel R.J.R., Colbourn C.J., Dinitz J.H.: Mutually orthogonal Latin squares (MOLS). In: Colbourn C.J., Dinitz J.H. (eds.) CRC Handbook of Combinatorial Designs, pp. 160–193. CRC Press, Boca Raton (2007).MATH
8.
go back to reference Abel R.J.R., Colbourn C.J., Wojtas M.: Concerning seven and eight mutually orthogonal Latin squares. J. Comb. Des. 12, 123–131 (2004).MathSciNetCrossRef Abel R.J.R., Colbourn C.J., Wojtas M.: Concerning seven and eight mutually orthogonal Latin squares. J. Comb. Des. 12, 123–131 (2004).MathSciNetCrossRef
9.
go back to reference Abel R.J.R., Costa S., Finizio N.J.: Directed-ordered whist tournaments and \((v,5,1)\) difference families: existence results and some new classes of \(Z\)-cyclic solutions. Discret. Appl. Math. 143, 43–53 (2004).MathSciNetCrossRef Abel R.J.R., Costa S., Finizio N.J.: Directed-ordered whist tournaments and \((v,5,1)\) difference families: existence results and some new classes of \(Z\)-cyclic solutions. Discret. Appl. Math. 143, 43–53 (2004).MathSciNetCrossRef
10.
go back to reference Abel R.J.R., Finizio N.J., Ge G., Greig M.: New \(Z\)-cyclic triplewhist frames and triplewhist tournament designs. Discret. Appl. Math. 154, 1649–1673 (2006).MathSciNetCrossRef Abel R.J.R., Finizio N.J., Ge G., Greig M.: New \(Z\)-cyclic triplewhist frames and triplewhist tournament designs. Discret. Appl. Math. 154, 1649–1673 (2006).MathSciNetCrossRef
11.
go back to reference Abel R.J.R., Ge G.: Some difference matrix constructions and an almost completion for the existence of triplewhist tournaments TWh\((v)\). Eur. J. Comb. 26, 1094–1104 (2005).MathSciNetCrossRef Abel R.J.R., Ge G.: Some difference matrix constructions and an almost completion for the existence of triplewhist tournaments TWh\((v)\). Eur. J. Comb. 26, 1094–1104 (2005).MathSciNetCrossRef
12.
go back to reference Bray J.N., Cai Q., Cameron P.J., Spiga P., Zhang H.: The Hall-Paige conjecture, and synchronization for affine and diagonal groups. J. Algebra 545, 27–42 (2020).MathSciNetCrossRef Bray J.N., Cai Q., Cameron P.J., Spiga P., Zhang H.: The Hall-Paige conjecture, and synchronization for affine and diagonal groups. J. Algebra 545, 27–42 (2020).MathSciNetCrossRef
13.
go back to reference Buratti M.: Recursive constructions for difference matrices and relative difference families. J. Comb. Des. 6, 165–182 (1998).MathSciNetCrossRef Buratti M.: Recursive constructions for difference matrices and relative difference families. J. Comb. Des. 6, 165–182 (1998).MathSciNetCrossRef
14.
15.
go back to reference Chee Y.M., Kiah H.M., Ling S., Wei H.: Geometric orthogonal codes of size larger than optical orthogonal codes. IEEE Trans. Inform. Theory 64(4), 2883–2895 (2018).MathSciNetCrossRef Chee Y.M., Kiah H.M., Ling S., Wei H.: Geometric orthogonal codes of size larger than optical orthogonal codes. IEEE Trans. Inform. Theory 64(4), 2883–2895 (2018).MathSciNetCrossRef
16.
go back to reference Colbourn C.J.: Difference matrices. In: Colbourn C.J., Dinitz J.H. (eds.) CRC Handbook of Combinatorial Designs, pp. 411–419. CRC Press, Boca Raton (2007).MATH Colbourn C.J.: Difference matrices. In: Colbourn C.J., Dinitz J.H. (eds.) CRC Handbook of Combinatorial Designs, pp. 411–419. CRC Press, Boca Raton (2007).MATH
17.
go back to reference Evans A.B.: Orthomorphism Graphs of Groups. Lecture Notes in Mathematics. Springer, Berlin (1992).CrossRef Evans A.B.: Orthomorphism Graphs of Groups. Lecture Notes in Mathematics. Springer, Berlin (1992).CrossRef
18.
19.
21.
go back to reference Feng T., Wang X., Chang Y.: Semi-cyclic holey group divisible designs with block size three. Des. Codes Cryptogr. 74, 301–324 (2015).MathSciNetCrossRef Feng T., Wang X., Chang Y.: Semi-cyclic holey group divisible designs with block size three. Des. Codes Cryptogr. 74, 301–324 (2015).MathSciNetCrossRef
22.
go back to reference Ge G.: On \((g,4;1)\)-difference matrices. Discret. Math. 301, 164–174 (2005).CrossRef Ge G.: On \((g,4;1)\)-difference matrices. Discret. Math. 301, 164–174 (2005).CrossRef
23.
go back to reference Ge G., Yin J.: Constructions for optimal \((v,4,1)\) optical orthogonal codes. IEEE Trans. Inf. Theory 47, 2998–3004 (2001).MathSciNetCrossRef Ge G., Yin J.: Constructions for optimal \((v,4,1)\) optical orthogonal codes. IEEE Trans. Inf. Theory 47, 2998–3004 (2001).MathSciNetCrossRef
25.
go back to reference Johnson D.M., Dulmage A.L., Mendelsohn N.S.: Orthomorphisms of groups and orthogonal latin squares. I. Can. J. Math. 13, 356–372 (1961).MathSciNetCrossRef Johnson D.M., Dulmage A.L., Mendelsohn N.S.: Orthomorphisms of groups and orthogonal latin squares. I. Can. J. Math. 13, 356–372 (1961).MathSciNetCrossRef
26.
27.
go back to reference Jungnickel D.: On difference matrices, resolvable transversal designs and generalized Hadamard matrices. Math. Zeitschrift 167, 49–60 (1979).MathSciNetCrossRef Jungnickel D.: On difference matrices, resolvable transversal designs and generalized Hadamard matrices. Math. Zeitschrift 167, 49–60 (1979).MathSciNetCrossRef
28.
go back to reference Lazebnik F., Thomason A.: Orthomorphisms and the construction of projective planes. Math. Comput. 73, 1547–1557 (2004).MathSciNetCrossRef Lazebnik F., Thomason A.: Orthomorphisms and the construction of projective planes. Math. Comput. 73, 1547–1557 (2004).MathSciNetCrossRef
29.
go back to reference Niskanen S., Östergård P.R.J.: Cliquer User’s Guide, Version 1.0, Communications Laboratory, Helsinki University of Technology, Espoo, Finland, Tech. Rep. T48 (2003). Niskanen S., Östergård P.R.J.: Cliquer User’s Guide, Version 1.0, Communications Laboratory, Helsinki University of Technology, Espoo, Finland, Tech. Rep. T48 (2003).
30.
go back to reference Pan R., Chang Y.: \((m, n,3,1)\) optical orthogonal signature pattern codes with maximum possible size. IEEE Trans. Inf. Theory 61, 1139–1148 (2015).MathSciNetCrossRef Pan R., Chang Y.: \((m, n,3,1)\) optical orthogonal signature pattern codes with maximum possible size. IEEE Trans. Inf. Theory 61, 1139–1148 (2015).MathSciNetCrossRef
31.
go back to reference Pan R., Chang Y.: A note on difference matrices over noncyclic finite abelian groups. Discret. Math. 339, 822–830 (2016).CrossRef Pan R., Chang Y.: A note on difference matrices over noncyclic finite abelian groups. Discret. Math. 339, 822–830 (2016).CrossRef
32.
go back to reference van Greevenbroek K., Jedwab J.: A new structure for difference matrices over abelian \(p\)-groups. In: Schmidt K.-U., Winterhof A. (eds.) Combinatorics and Finite Fields: Difference Sets, Polynomials, Pseudorandomness and Applications, pp. 79–108. de Gruyter, Berlin (2019).CrossRef van Greevenbroek K., Jedwab J.: A new structure for difference matrices over abelian \(p\)-groups. In: Schmidt K.-U., Winterhof A. (eds.) Combinatorics and Finite Fields: Difference Sets, Polynomials, Pseudorandomness and Applications, pp. 79–108. de Gruyter, Berlin (2019).CrossRef
33.
Metadata
Title
Difference matrices with five rows over finite abelian groups
Authors
Rong Pan
R. Julian R. Abel
Yudhistira A. Bunjamin
Tao Feng
Tiana J. Tsang Ung
Xiaomiao Wang
Publication date
28-01-2022
Publisher
Springer US
Published in
Designs, Codes and Cryptography / Issue 2/2022
Print ISSN: 0925-1022
Electronic ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-021-00981-6

Other articles of this Issue 2/2022

Designs, Codes and Cryptography 2/2022 Go to the issue

Premium Partner