Skip to main content
Top
Published in: Journal of Inequalities and Applications 1/2018

Open Access 01-12-2018 | Research

Different types of quantum integral inequalities via \((\alpha ,m)\)-convexity

Authors: Yao Zhang, Ting-Song Du, Hao Wang, Yan-Jun Shen

Published in: Journal of Inequalities and Applications | Issue 1/2018

Activate our intelligent search to find suitable subject content or patents.

search-config
download
DOWNLOAD
print
PRINT
insite
SEARCH
loading …

Abstract

In this paper, based on \((\alpha,m)\)-convexity, we establish different type inequalities via quantum integrals. These inequalities generalize some results given in the literature.
Notes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction and preliminaries

Throughout the paper, let \(I:= [a, b]\subseteq\mathbb{R}\) with \(0\leq a< b\) be an interval, \(I^{\circ}\) be the interior of I and let \(0< q<1\) be a constant.
Let \(f:I\rightarrow\mathbb{R}\) be convex on I, then the Hermite–Hadamard inequality holds:
$$ f \biggl(\frac{a+b}{2} \biggr)\leq\frac{1}{b-a} \int^{b}_{a} f(x)\, \mathrm{d}x\leq \frac{f(a)+f(b)}{2}. $$
(1.1)
If \(f:I\rightarrow\mathbb{R}\) is four times continuously differentiable on \(I^{\circ}\) and \(\|f^{(4)} \|_{\infty}= \sup_{x\in (a,b)} |f^{(4)}(x) |<\infty\), then the Simpson inequality holds:
$$ \biggl\vert \frac{1}{3}\biggl[\frac{f(a)+f(b)}{2}+2f \biggl(\frac{a+b}{2} \biggr)\biggr]-\frac{1}{b-a} \int^{b}_{a} f(x)\, \mathrm{d}x \biggr\vert \leq \frac {1}{2880} \bigl\Vert f^{(4)} \bigr\Vert _{\infty}(b-a)^{4}. $$
(1.2)
Many researchers generalized the inequalities (1.1) and (1.2). For more details on these inequalities, see [58, 1014, 16, 17, 22, 24, 25].
In 2014, Tariboon and Ntouyas defined the q-derivative and q-integral as follows.
Definition 1.1
([28])
Let \(f: I\rightarrow\mathbb{R}\) be a continuous function and let \(x\in I\). Then the q-derivative on I of f at x is defined as
$$ {}_{a}D_{q}f(x)=\frac{f(x)-f(qx+(1-q)a)}{(1-q)(x-a)}, \quad x\neq a,\qquad {}_{a}D_{q}f(a)={\lim_{x\to a}} {}_{a}D_{q}f(x). $$
Definition 1.2
([28])
Let \(f: I\rightarrow\mathbb{R}\) be a continuous function. Then the q-integral on I is defined as
$$ \int^{x}_{a}f(t)\, {}_{a} \mathrm{d}_{q}t=(1-q) (x-a)\sum^{\infty}_{n=0}q^{n}f \bigl(q^{n}x+\bigl(1-q^{n}\bigr)a \bigr) $$
for \(x\in I\). Moreover, if \(c\in(a,x)\), then the q-integral on I is defined as
$$ \int^{x}_{c}f(t)\, {}_{a} \mathrm{d}_{q}t= \int^{x}_{a}f(t)\, {}_{a} \mathrm{d}_{q}t- \int ^{c}_{a}f(t)\, {}_{a} \mathrm{d}_{q}t. $$
In the same paper, they also proved the following q-Hölder inequality.
Theorem 1.1
([28])
Let \(f,g: I\rightarrow\mathbb{R}\) be two continuous functions. Then the inequality
$$ \int^{x}_{a} \bigl\vert f(t) \bigr\vert \bigl\vert g(t) \bigr\vert \, {}_{a}\mathrm{d}_{q}t\leq \biggl( \int ^{x}_{a} \bigl\vert f(t) \bigr\vert ^{r_{1}}\, {}_{a}\mathrm{d}_{q}t \biggr)^{\frac{1}{r_{1}}} \biggl( \int^{x}_{a} \bigl\vert g(t) \bigr\vert ^{r_{2}}\, {}_{a}\mathrm{d}_{q}t \biggr)^{\frac{1}{r_{2}}} $$
holds for all \(x\in I\) and \(r_{1},r_{2}>1\) with \(r_{1}^{-1}+r_{2}^{-1}=1\).
In 2018, Alp et al. generalized the Hermite–Hadamard inequality to the form of q-integrals as follows.
Theorem 1.2
([2])
Let \(f:I\rightarrow\mathbb{R}\) be convex and differentiable on I with \(0< q<1\). Then we have
$$ f \biggl(\frac{qa+b}{1+q} \biggr)\leq\frac{1}{b-a} \int_{a}^{b}f(x)\, {}_{a}\mathrm {d}_{q}x\leq\frac{qf(a)+f(b)}{1+q}. $$
(1.3)
For more details on the inequality (1.3), see [15, 18, 20, 21, 23]. For other type quantum integral inequalities, the interested reader can refer to [3, 4, 27, 29, 31].
In 1993, Miheşan gave the definition of \((\alpha,m)\)-convex functions as follows.
Definition 1.3
([19])
For \(b^{*}>0\), the function \(f: [0,b^{*}]\rightarrow\mathbb{R}\) is named \((\alpha,m)\)-convex with \(\alpha,m\in(0,1]\) if the inequality
$$ f \bigl(tx+m(1-t)y \bigr)\leq t^{\alpha}f(x)+m\bigl(1-t^{\alpha} \bigr)f(y) $$
holds for all \(x,y\in[0,b^{*}]\) and \(t\in[0,1]\).
This paper aims to establish different types of quantum integral inequalities via \((\alpha,m)\)-convexity. Some relevant connections of the results obtained in this paper with previous ones are also pointed out.

2 Auxiliary results

For proving main results, we need the following lemma.
Lemma 2.1
Let \(f: I\rightarrow\mathbb{R}\) be a continuous and q-differentiable function on \(I^{\circ}\) with \(0< q <1\). Then the identity
$$\begin{aligned} &\lambda \bigl[\mu f(b)+(1-\mu)f(a) \bigr]+(1-\lambda)f \bigl(\mu b+(1-\mu )a \bigr)-\frac{1}{b-a} \int_{a}^{b}f(x)\,{}_{a} \mathrm{d}_{q}x \\ &\quad =(b-a) \biggl\{ \int_{0}^{\mu}(qt+\lambda\mu-\lambda){}_{a}D_{q}f \bigl(tb+(1-t)a \bigr)\,{}_{0}\mathrm{d}_{q}t \\ &\qquad {} + \int_{\mu}^{1} (qt+\lambda\mu-1){}_{a}D_{q}f \bigl(tb+(1-t)a \bigr)\,{}_{0}\mathrm {d}_{q}t \biggr\} \end{aligned}$$
holds for all \(\lambda,\mu\in[0,1]\) if \({}_{a}D_{q}f\) is integrable on I.
Proof
By an identical transformation, we get
$$\begin{aligned} &(b-a) \biggl\{ \int_{0}^{\mu}(qt+\lambda\mu-\lambda){}_{a}D_{q}f \bigl(tb+(1-t)a \bigr)\,{}_{0}\mathrm{d}_{q}t \\ &\qquad {} + \int_{\mu}^{1} (qt+\lambda\mu-1){}_{a}D_{q}f \bigl(tb+(1-t)a \bigr)\,{}_{0}\mathrm {d}_{q}t \biggr\} \\ &\quad =(b-a) \biggl\{ \int_{0}^{1} (qt+\lambda\mu-1){}_{a}D_{q}f \bigl(tb+(1-t)a \bigr)\,{}_{0}\mathrm{d}_{q}t \\ &\qquad {} + \int_{0}^{\mu}(1-\lambda) {}_{a}D_{q}f \bigl(tb+(1-t)a \bigr)\,{}_{0}\mathrm {d}_{q}t \biggr\} . \end{aligned}$$
(2.1)
From Definition 1.1, we get
$$\begin{aligned} {}_{a}D_{q}f \bigl(tb+(1-t)a \bigr)&=\frac {f(tb+(1-t)a)-f(q[tb+(1-t)a]+(1-q)a)}{(1-q)(tb+(1-t)a-a)} \\ &=\frac{f(tb+(1-t)a)-f(qtb+(1-qt)a)}{t(1-q)(b-a)}. \end{aligned}$$
Utilizing the above calculation and Definition 1.2, we have
$$\begin{aligned} & \int_{0}^{1}t {}_{a}D_{q}f \bigl(tb+(1-t)a \bigr)\,{}_{0}\mathrm{d}_{q}t \\ &\quad = \int_{0}^{1} \frac{f(tb+(1-t)a)-f(qtb+(1-qt)a)}{(1-q)(b-a)}\,{}_{0} \mathrm {d}_{q}t \\ &\quad =\frac{1}{b-a} \Biggl\{ \sum_{n=0}^{\infty}q^{n} f \bigl(q^{n} b+\bigl(1-q^{n}\bigr)a \bigr) \\ &\qquad {} -\sum_{n=0}^{\infty}q^{n} f \bigl(q^{n+1} b+\bigl(1-q^{n+1}\bigr)a \bigr) \Biggr\} \\ &\quad =\frac{1}{b-a} \Biggl\{ \sum_{n=0}^{\infty}q^{n} f \bigl(q^{n} b+\bigl(1-q^{n}\bigr)a \bigr) \\ &\qquad {} -\frac{1}{q}\sum_{n=0}^{\infty}q^{n+1} f \bigl(q^{n+1} b+\bigl(1-q^{n+1}\bigr)a \bigr) \Biggr\} \\ &\quad =\frac{1}{b-a} \Biggl\{ f(b)+ \biggl(1-\frac{1}{q} \biggr)\sum _{n=1}^{\infty }q^{n} f \bigl(q^{n} b+\bigl(1-q^{n}\bigr)a \bigr) \Biggr\} \\ &\quad =\frac{1}{b-a} \Biggl\{ \frac{1}{q}f(b)-\frac{1-q}{q}\sum _{n=0}^{\infty }q^{n} f \bigl(q^{n} b+\bigl(1-q^{n}\bigr)a \bigr) \Biggr\} \\ &\quad =\frac{f(b)}{q(b-a)}-\frac{1}{q(b-a)^{2}} \int_{a}^{b}f(x)\,{}_{a} \mathrm{d}_{q}x, \end{aligned}$$
(2.2)
$$\begin{aligned} & \int_{0}^{1}{}_{a}D_{q}f \bigl(tb+(1-t)a \bigr)\,{}_{0}\mathrm{d}_{q}t \\ &\quad = \int_{0}^{1} \frac{f(tb+(1-t)a)-f(qtb+(1-qt)a)}{t(1-q)(b-a)}\,{}_{0} \mathrm {d}_{q}t \\ &\quad =\frac{1}{b-a} \Biggl\{ \sum_{n=0}^{\infty} f \bigl(q^{n} b+\bigl(1-q^{n}\bigr)a \bigr)-\sum _{n=0}^{\infty} f \bigl(q^{n+1} b+ \bigl(1-q^{n+1}\bigr)a \bigr) \Biggr\} \\ &\quad =\frac{f(b)-f(a)}{b-a} \end{aligned}$$
(2.3)
and
$$\begin{aligned} & \int_{0}^{\mu}{}_{a}D_{q}f \bigl(tb+(1-t)a \bigr)\,{}_{0}\mathrm{d}_{q}t \\ &\quad = \int_{0}^{\mu}\frac {f(tb+(1-t)a)-f(qtb+(1-qt)a)}{t(1-q)(b-a)}\,{}_{0} \mathrm{d}_{q}t \\ &\quad =\frac{1}{b-a} \Biggl\{ \sum_{n=0}^{\infty} f \bigl(q^{n}\mu b+\bigl(1-q^{n}\mu \bigr)a \bigr) -\sum _{n=0}^{\infty} f \bigl(q^{n+1}\mu b+ \bigl(1-q^{n+1}\mu\bigr)a \bigr) \Biggr\} \\ &\quad =\frac{f(\mu b+(1-\mu)a)-f(a)}{b-a}. \end{aligned}$$
(2.4)
Substituting (2.2), (2.3) and (2.4) into (2.1), we can obtain the desired result. This ends the proof. □
Remark 2.1
In Lemma 2.1, if one takes \(q\rightarrow1^{-}\), one has [9, Lemma 2].
Remark 2.2
Consider Lemma 2.1.
(i)
Putting \(\mu=0\), we have
$$\begin{aligned}& f(a)-\frac{1}{b-a} \int_{a}^{b}f(x)\,{}_{a} \mathrm{d}_{q}x \\& \quad =(b-a) \int_{0}^{1} (qt-1){}_{a}D_{q}f \bigl(tb+(1-t)a \bigr)\,{}_{0}\mathrm{d}_{q}t. \end{aligned}$$
(2.5)
 
(ii)
Putting \(\mu=1\), we have
$$ f(b)-\frac{1}{b-a} \int_{a}^{b}f(x)\,{}_{a} \mathrm{d}_{q}x =(b-a) \int_{0}^{1} qt {}_{a}D_{q}f \bigl(tb+(1-t)a \bigr)\,{}_{0}\mathrm{d}_{q}t. $$
(2.6)
 
(iii)
Putting \(\mu=\frac{1}{1+q}\), we have
$$\begin{aligned} &\lambda\frac{qf(a)+f(b)}{1+q}+(1-\lambda)f \biggl(\frac{qa+b}{1+q} \biggr)- \frac{1}{b-a} \int_{a}^{b}f(x)\,{}_{a} \mathrm{d}_{q}x \\ &\quad =(b-a) \biggl\{ \int_{0}^{\frac{1}{1+q}} \biggl(qt-\frac{\lambda q}{1+q} \biggr){}_{a}D_{q}f \bigl(tb+(1-t)a \bigr) \,{}_{0}\mathrm{d}_{q}t \\ &\qquad {} + \int_{\frac{1}{1+q}}^{1} \biggl(qt+\frac{\lambda}{1+q}-1 \biggr){}_{a}D_{q}f \bigl(tb+(1-t)a \bigr) \,{}_{0}\mathrm{d}_{q}t \biggr\} . \end{aligned}$$
(2.7)
 
Remark 2.3
Consider Lemma 2.1.
(i) Putting \(\lambda=0\), we get
$$\begin{aligned} &f \bigl(\mu b+(1-\mu)a \bigr)-\frac{1}{b-a} \int_{a}^{b}f(x)\,{}_{a} \mathrm{d}_{q}x \\ &\quad =(b-a) \biggl\{ \int_{0}^{\mu}qt {}_{a}D_{q}f \bigl(tb+(1-t)a \bigr)\,{}_{0}\mathrm {d}_{q}t \\ &\qquad {} + \int_{\mu}^{1} (qt-1){}_{a}D_{q}f \bigl(tb+(1-t)a \bigr)\,{}_{0}\mathrm{d}_{q}t \biggr\} . \end{aligned}$$
(2.8)
Specially, taking \(\mu=\frac{1}{1+q}\), we obtain the midpoint-like integral identity
$$\begin{aligned} &f \biggl({\frac{qa+b}{1+q}} \biggr)-\frac{1}{b-a} \int_{a}^{b}f(x)\,{}_{a}\mathrm {d}_{q}x \\ &\quad =(b-a) \biggl\{ \int_{0}^{\frac{1}{1+q}} qt {}_{a}D_{q}f \bigl(tb+(1-t)a \bigr)\,{}_{0}\mathrm{d}_{q}t \\ &\qquad {} + \int_{\frac{1}{1+q}}^{1} (qt-1){}_{a}D_{q}f \bigl(tb+(1-t)a \bigr)\,{}_{0}\mathrm {d}_{q}t \biggr\} , \end{aligned}$$
which is presented by Alp et al. in [2, Lemma 11].
(ii) Putting \(\lambda=\frac{1}{3}\), we get
$$\begin{aligned} &\frac{1}{3} \bigl[\mu f(b)+(1-\mu)f(a)+2f \bigl(\mu b+(1-\mu)a \bigr) \bigr]-\frac{1}{b-a} \int_{a}^{b}f(x)\,{}_{a} \mathrm{d}_{q}x \\ &\quad =(b-a) \biggl\{ \int_{0}^{\mu}\biggl(qt+\frac{1}{3}\mu- \frac{1}{3} \biggr){}_{a}D_{q}f \bigl(tb+(1-t)a \bigr)\,{}_{0}\mathrm{d}_{q}t \\ &\qquad {} + \int_{\mu}^{1} \biggl(qt+\frac{1}{3}\mu-1 \biggr){}_{a}D_{q}f \bigl(tb+(1-t)a \bigr) \,{}_{0}\mathrm{d}_{q}t \biggr\} . \end{aligned}$$
(2.9)
Specially, taking \(\mu=\frac{1}{1+q}\), we obtain the Simpson-like integral identity
$$\begin{aligned} &\frac{1}{3} \biggl[\frac{qf(a)+f(b)}{1+q}+2f \biggl(\frac{qa+b}{1+q} \biggr) \biggr]-\frac{1}{b-a} \int_{a}^{b}f(x)\,{}_{a} \mathrm{d}_{q}x \\ &\quad =(b-a) \biggl\{ \int_{0}^{\frac{1}{1+q}} \biggl(qt-\frac{q}{3+3q} \biggr){}_{a}D_{q}f \bigl(tb+(1-t)a \bigr) \,{}_{0}\mathrm{d}_{q}t \\ &\qquad {} + \int_{\frac{1}{1+q}}^{1} \biggl(qt+\frac{1}{3+3q}-1 \biggr){}_{a}D_{q}f \bigl(tb+(1-t)a \bigr) \,{}_{0}\mathrm{d}_{q}t \biggr\} . \end{aligned}$$
(2.10)
(iii) Putting \(\lambda=\frac{1}{2}\), we get
$$\begin{aligned} &\frac{1}{2} \bigl[\mu f(b)+(1-\mu)f(a)+f \bigl(\mu b+(1-\mu)a \bigr) \bigr]-\frac{1}{b-a} \int_{a}^{b}f(x)\,{}_{a} \mathrm{d}_{q}x \\ &\quad =(b-a) \biggl\{ \int_{0}^{\mu}\biggl(qt+\frac{1}{2}\mu- \frac{1}{2} \biggr){}_{a}D_{q}f \bigl(tb+(1-t)a \bigr)\,{}_{0}\mathrm{d}_{q}t \\ &\qquad {} + \int_{\mu}^{1} \biggl(qt+\frac{1}{2}\mu-1 \biggr){}_{a}D_{q}f \bigl(tb+(1-t)a \bigr) \,{}_{0}\mathrm{d}_{q}t \biggr\} . \end{aligned}$$
(2.11)
Specially, taking \(\mu=\frac{1}{1+q}\), we obtain the averaged midpoint-trapezoid-like integral identity
$$\begin{aligned} &\frac{1}{2} \biggl[\frac{qf(a)+f(b)}{1+q}+f \biggl(\frac{qa+b}{1+q} \biggr) \biggr]-\frac{1}{b-a} \int_{a}^{b}f(x)\,{}_{a} \mathrm{d}_{q}x \\ &\quad =(b-a) \biggl\{ \int_{0}^{\frac{1}{1+q}} \biggl(qt-\frac{q}{2+2q} \biggr){}_{a}D_{q}f \bigl(tb+(1-t)a \bigr) \,{}_{0}\mathrm{d}_{q}t \\ &\qquad {} + \int_{\frac{1}{1+q}}^{1} \biggl(qt+\frac{1}{2+2q}-1 \biggr){}_{a}D_{q}f \bigl(tb+(1-t)a \bigr) \,{}_{0}\mathrm{d}_{q}t \biggr\} . \end{aligned}$$
(2.12)
(iv) Putting \(\lambda=1\), we get
$$\begin{aligned} &\mu f(b)+(1-\mu)f(a)-\frac{1}{b-a} \int_{a}^{b}f(x)\,{}_{a} \mathrm{d}_{q}x \\ &\quad =(b-a) \int_{0}^{1} (qt+\mu-1){}_{a}D_{q}f \bigl(tb+(1-t)a \bigr)\,{}_{0}\mathrm{d}_{q}t. \end{aligned}$$
(2.13)
Specially, taking \(\mu=\frac{1}{1+q}\), we obtain the trapezoid-like integral identity
$$\begin{aligned} &\frac{qf(a)+f(b)}{1+q}-\frac{1}{b-a} \int_{a}^{b}f(x)\,{}_{a} \mathrm{d}_{q}x \\ &\quad =(b-a) \int_{0}^{1} \biggl(qt+\frac{1}{1+q}-1 \biggr){}_{a}D_{q}f \bigl(tb+(1-t)a \bigr) \,{}_{0}\mathrm{d}_{q}t, \end{aligned}$$
which is presented by Sudsutad et al. in [26, Lemma 3.1].
It is worth to mention here that to the best of our knowledge the obtained identities (2.5)–(2.13) are new in the literature.
Next we provide some calculations which will be used in this paper.
Lemma 2.2
Let \(\mu\in[0,1]\) and \(\tau\in[0,\infty)\). From Definition 1.2, we have
$$ \int_{0}^{\mu}t^{\tau} \,{}_{0} \mathrm{d}_{q}t=(1-q)\sum_{n=0}^{\infty} \mu^{\tau +1}q^{(\tau+1)n} =\frac{\mu^{\tau+1}(1-q)}{1-q^{\tau+1}} $$
and
$$ \int_{0}^{\mu}(1-t)^{\tau} \,{}_{0}\mathrm{d}_{q}t=(1-q)\mu\sum _{n=0}^{\infty }q^{n} \bigl(1-q^{n}\mu \bigr)^{\tau}. $$
Lemma 2.3
Let \(\lambda,\mu\in[0,1]\) and \(\tau\in[0,\infty)\). Then we have
$$\begin{aligned} & \int_{0}^{\mu}t^{\tau} \bigl\vert qt-( \lambda-\lambda\mu) \bigr\vert \,{}_{0}\mathrm {d}_{q}t \\ & \quad = \textstyle\begin{cases} \frac{\mu^{\tau+1}(1-q)(\lambda-\lambda\mu)}{1-q^{\tau+1}}-\frac{q\mu ^{\tau+2}(1-q)}{1-q^{\tau+2}}, &(\lambda+q)\mu\leq\lambda, \\ \frac{2(1-q)^{2}(\lambda-\lambda\mu)^{\tau+2}}{(1-q^{\tau+1})(1-q^{\tau +2})}+\frac{q\mu^{\tau+2}(1-q)}{1-q^{\tau+2}}-\frac{\mu^{\tau +1}(1-q)(\lambda-\lambda\mu)}{1-q^{\tau+1}}, &(\lambda+q)\mu>\lambda, \end{cases}\displaystyle \end{aligned}$$
and
$$\begin{aligned} & \int_{0}^{\mu}(1-t)^{\tau} \bigl\vert qt-( \lambda-\lambda\mu) \bigr\vert \,{}_{0}\mathrm {d}_{q}t \\ &\quad = \textstyle\begin{cases} (1-q)\mu\sum_{n=0}^{\infty}q^{n} (\lambda-\lambda\mu-q^{n+1}\mu ) (1-q^{n}\mu )^{\tau}, &(\lambda+q)\mu\leq\lambda, \\ \left [ \textstyle\begin{array}{l} 2(1-q)(\lambda-\lambda\mu)^{2}\sum_{n=0}^{\infty}q^{n-1} (1-q^{n} ) [1-q^{n-1}(\lambda-\lambda\mu) ]^{\tau} \\ \quad {}-(1-q)\mu\sum_{n=0}^{\infty}q^{n} (\lambda-\lambda\mu-q^{n+1}\mu ) (1-q^{n}\mu )^{\tau} \end{array}\displaystyle \right ], &(\lambda+q)\mu>\lambda. \end{cases}\displaystyle \end{aligned}$$
Proof
When \((\lambda+q)\mu\leq\lambda\), making use of Lemma 2.2, we get
$$\begin{aligned} \int_{0}^{\mu}t^{\tau} \bigl\vert qt-( \lambda-\lambda\mu) \bigr\vert \,{}_{0}\mathrm{d}_{q}t &= \int_{0}^{\mu}\bigl[(\lambda-\lambda \mu)t^{\tau}-qt^{\tau+1} \bigr]\,{}_{0} \mathrm{d}_{q}t \\ &=\frac{\mu^{\tau+1}(1-q)(\lambda-\lambda\mu)}{1-q^{\tau+1}}-\frac{q\mu ^{\tau+2}(1-q)}{1-q^{\tau+2}}. \end{aligned}$$
When \((\lambda+q)\mu>\lambda\), making use of Lemma 2.2 again, we get
$$\begin{aligned} & \int_{0}^{\mu}t^{\tau} \bigl\vert qt-( \lambda-\lambda\mu) \bigr\vert \,{}_{0}\mathrm {d}_{q}t \\ &\quad = \int_{0}^{\frac{\lambda-\lambda\mu}{q}} \bigl[(\lambda-\lambda\mu )t^{\tau}-qt^{\tau+1} \bigr]\,{}_{0} \mathrm{d}_{q}t + \int^{\mu}_{\frac{\lambda-\lambda\mu}{q}} \bigl[qt^{\tau+1}-(\lambda - \lambda\mu)t^{\tau} \bigr]\,{}_{0}\mathrm{d}_{q}t \\ &\quad =2 \int_{0}^{\frac{\lambda-\lambda\mu}{q}} \bigl[(\lambda-\lambda\mu )t^{\tau}-qt^{\tau+1} \bigr]\,{}_{0} \mathrm{d}_{q}t + \int^{\mu}_{0} \bigl[qt^{\tau+1}-(\lambda- \lambda\mu)t^{\tau} \bigr]\,{}_{0}\mathrm{d}_{q}t \\ &\quad =\frac{2(1-q)^{2}(\lambda-\lambda\mu)^{\tau+2}}{(1-q^{\tau +1})(1-q^{\tau+2})}+\frac{q\mu^{\tau+2}(1-q)}{1-q^{\tau+2}}-\frac{\mu ^{\tau+1}(1-q)(\lambda-\lambda\mu)}{1-q^{\tau+1}}. \end{aligned}$$
Similarly, we also get
$$\begin{aligned} & \int_{0}^{\mu}(1-t)^{\tau} \bigl\vert qt-( \lambda-\lambda\mu) \bigr\vert \,{}_{0}\mathrm {d}_{q}t \\ &\quad = \textstyle\begin{cases} (1-q)\mu\sum_{n=0}^{\infty}q^{n} (\lambda-\lambda\mu-q^{n+1}\mu ) (1-q^{n}\mu )^{\tau}, &(\lambda+q)\mu\leq\lambda, \\ \left [ \textstyle\begin{array}{l} 2(1-q)(\lambda-\lambda\mu)^{2}\sum_{n=0}^{\infty}q^{n-1} (1-q^{n} ) [1-q^{n-1}(\lambda-\lambda\mu) ]^{\tau}\\ \quad {}-(1-q)\mu\sum_{n=0}^{\infty}q^{n} (\lambda-\lambda\mu-q^{n+1}\mu ) (1-q^{n}\mu )^{\tau} \end{array}\displaystyle \right ], &(\lambda+q)\mu>\lambda. \end{cases}\displaystyle \end{aligned}$$
This completes the proof. □
The following results of Lemma 2.4, Lemma 2.5 and Lemma 2.6 are stated without proof.
Lemma 2.4
Let \(\lambda,\mu\in[0,1]\) and \(\tau\in[0,\infty)\). Then we have
$$\begin{aligned} & \int_{0}^{1} t^{\tau} \bigl\vert qt-(1- \lambda\mu) \bigr\vert \,{}_{0}\mathrm{d}_{q}t \\ &\quad = \textstyle\begin{cases} \frac{(1-q)(1-\lambda\mu)}{1-q^{\tau+1}}-\frac{q(1-q)}{1-q^{\tau+2}}, &\lambda\mu+q\leq1, \\ \frac{2(1-q)^{2}(1-\lambda\mu)^{\tau+2}}{(1-q^{\tau+1})(1-q^{\tau +2})}+\frac{q(1-q)}{1-q^{\tau+2}}-\frac{(1-q)(1-\lambda\mu)}{1-q^{\tau+1}}, &\lambda\mu+q>1, \end{cases}\displaystyle \end{aligned}$$
and
$$\begin{aligned} & \int_{0}^{1} (1-t)^{\tau} \bigl\vert qt-(1-\lambda\mu) \bigr\vert \,{}_{0}\mathrm{d}_{q}t \\ &\quad = \textstyle\begin{cases} (1-q)\sum_{n=0}^{\infty}q^{n} (1-\lambda\mu-q^{n+1} ) (1-q^{n} )^{\tau}, &\lambda\mu+q\leq1, \\ \left [ \textstyle\begin{array}{l} 2(1-q)(1-\lambda\mu)^{2}\sum_{n=0}^{\infty}q^{n-1} (1-q^{n} ) [1-q^{n-1}(1-\lambda\mu) ]^{\tau}\\ \quad {}-(1-q)\sum_{n=0}^{\infty}q^{n} (1-\lambda\mu-q^{n+1} ) (1-q^{n} )^{\tau} \end{array}\displaystyle \right ], &\lambda\mu+q>1. \end{cases}\displaystyle \end{aligned}$$
Lemma 2.5
Let \(\lambda,\mu\in[0,1]\) and \(\tau\in[0,\infty)\). Then we have
$$\begin{aligned} & \int_{0}^{\mu}t^{\tau} \bigl\vert qt-(1- \lambda\mu) \bigr\vert \,{}_{0}\mathrm{d}_{q}t \\ &\quad = \textstyle\begin{cases} \frac{\mu^{\tau+1}(1-\lambda\mu)(1-q)}{1-q^{\tau+1}}-\frac{q\mu^{\tau +2}(1-q)}{1-q^{\tau+2}}, &(\lambda+q)\mu\leq1, \\ \frac{2(1-q)^{2}(1-\lambda\mu)^{\tau+2}}{(1-q^{\tau+1})(1-q^{\tau +2})}+\frac{q\mu^{\tau+2}(1-q)}{1-q^{\tau+2}}-\frac{\mu^{\tau +1}(1-\lambda\mu)(1-q)}{1-q^{\tau+1}}, &(\lambda+q)\mu> 1, \end{cases}\displaystyle \end{aligned}$$
and
$$\begin{aligned} & \int_{0}^{\mu}(1-t)^{\tau} \bigl\vert qt-(1-\lambda\mu) \bigr\vert \,{}_{0}\mathrm{d}_{q}t \\ &\quad = \textstyle\begin{cases} (1-q)\mu\sum_{n=0}^{\infty}q^{n} (1-\lambda\mu-q^{n+1}\mu ) (1-q^{n}\mu )^{\tau}, &(\lambda+q)\mu\leq1, \\ \left [ \textstyle\begin{array}{l} 2(1-q)(1-\lambda\mu)^{2}\sum_{n=0}^{\infty}q^{n-1} (1-q^{n} ) [1-q^{n-1}(1-\lambda\mu) ]^{\tau}\\ \quad {}-(1-q)\mu\sum_{n=0}^{\infty}q^{n} (1-\lambda\mu-q^{n+1}\mu ) (1-q^{n}\mu )^{\tau} \end{array}\displaystyle \right ], &(\lambda+q)\mu>1. \end{cases}\displaystyle \end{aligned}$$
Lemma 2.6
Let \(\lambda,\mu\in[0,1]\) and \(\theta\in[1,\infty)\). Then we have
$$\begin{aligned} & \int_{0}^{1} \bigl\vert qt-(1-\lambda\mu) \bigr\vert ^{\theta}\,{}_{0}\mathrm{d}_{q}t \\ &\quad = \textstyle\begin{cases} (1-q)\sum_{n=0}^{\infty}q^{n} (1-\lambda\mu-q^{n+1} )^{\theta}, &0\leq\lambda\mu\leq1-q, \\ \left [ \textstyle\begin{array}{l} (1-q)(1-\lambda\mu)^{\theta+1}\sum_{n=0}^{\infty}q^{n-1} (1-q^{n} )^{\theta}\\ \quad {}+(1-q)\sum_{n=0}^{\infty}q^{n} (q^{n+1}-1+\lambda\mu )^{\theta}\\ \quad {}-(1-q)(1-\lambda\mu)^{\theta+1}\sum_{n=0}^{\infty}q^{n-1} (q^{n}-1 )^{\theta}\end{array}\displaystyle \right ], &1-q< \lambda\mu\leq1. \end{cases}\displaystyle \end{aligned}$$

3 Main results

In 2018, Alp et al. established the q-Hermite–Hadamard inequality in [2]. Here we give a new proof, which is more concise.
Theorem 3.1
Let \(f:I\rightarrow\mathbb{R}\) be a convex function on \([a,b]\) with \(0< q<1\). Then we have
$$ f \biggl(\frac{qa+b}{1+q} \biggr)\leq\frac{1}{b-a} \int_{a}^{b}f(x)\,{}_{a}\mathrm {d}_{q}x\leq\frac{qf(a)+f(b)}{1+q}. $$
Proof
It is obvious that \(\sum_{n=0}^{\infty}(1-q)q^{n}=1\), \(0< q<1\). Since Jensen’s inequality defined on convex sets for infinite sums still remains true, utilizing this fact and Definition 1.2, we have
$$\begin{aligned} f \biggl(\frac{qa+b}{1+q} \biggr) &=f \Biggl(\sum _{n=0}^{\infty}(1-q)q^{n} \bigl(q^{n}b+ \bigl(1-q^{n}\bigr)a \bigr) \Biggr) \\ &\leq\sum_{n=0}^{\infty}(1-q)q^{n}f \bigl(q^{n}b+\bigl(1-q^{n}\bigr)a \bigr) \\ &=\frac{1}{b-a} \int_{a}^{b}f(x)\,{}_{a} \mathrm{d}_{q}x. \end{aligned}$$
Using Definition 1.2 and the convexity of f, we get
$$\begin{aligned} \frac{1}{b-a} \int_{a}^{b}f(x)\,{}_{a} \mathrm{d}_{q}x &= \sum_{n=0}^{\infty}(1-q)q^{n}f \bigl(q^{n}b+\bigl(1-q^{n}\bigr)a \bigr) \\ &\leq\sum_{n=0}^{\infty}(1-q)q^{n} \bigl[q^{n}f(b)+\bigl(1-q^{n}\bigr)f(a) \bigr] \\ &=\frac{qf(a)+f(b)}{1+q}. \end{aligned}$$
The proof is completed. □
Using Lemma 2.1, we can obtain the following theorem.
Theorem 3.2
For \(0\leq a< b\) and some fixed \(m\in(0,1]\), let \(f: [a,\frac {b}{m} ]\rightarrow\mathbb{R}\) be a continuous and q-differentiable function on \((a,\frac{b}{m} )\), and let \({}_{a}D_{q}f\) be integrable on \([a,\frac{b}{m} ]\) with \(0< q <1\). Then the inequality
$$\begin{aligned} & \biggl\vert \lambda \bigl[\mu f(b)+(1-\mu)f(a) \bigr]+(1-\lambda)f \bigl(\mu b+(1-\mu)a \bigr)-\frac{1}{b-a} \int_{a}^{b}f(x)\,{}_{a} \mathrm{d}_{q}x \biggr\vert \\ &\quad \leq\min \bigl\{ \mathcal{H}_{1}(\lambda,\mu,\alpha,m),\mathcal {H}_{2}(\lambda,\mu,\alpha,m) \bigr\} \end{aligned}$$
holds for all \(\lambda,\mu\in[0,1]\) if \(|{}_{a}D_{q}f|\) is \((\alpha ,m)\)-convex on \([a,\frac{b}{m} ]\) with \(\alpha,m\in(0,1]^{2}\), where
$$\begin{aligned}& \begin{aligned} \mathcal{H}_{1}(\lambda,\mu,\alpha,m) &=(b-a) \biggl\{ \bigl[\Phi_{1}(\lambda,\mu,\alpha)+\Phi_{2}( \lambda,\mu,\alpha )-\Phi_{3}(\lambda,\mu,\alpha) \bigr] \bigl\vert {}_{a}D_{q}f(b) \bigr\vert \\ &\quad {} +m \bigl[\Phi_{4}(\lambda,\mu)+\Phi_{5}(\lambda, \mu)-\Phi_{6}(\lambda,\mu )-\Phi_{1}(\lambda,\mu,\alpha) \\ &\quad {} -\Phi_{2}(\lambda,\mu,\alpha)+\Phi_{3}(\lambda, \mu,\alpha) \bigr] \biggl\vert {}_{a}D_{q}f \biggl( \frac{a}{m} \biggr) \biggr\vert \biggr\} , \end{aligned} \\& \begin{aligned} \mathcal{H}_{2}(\lambda,\mu,\alpha,m) &=(b-a) \biggl\{ \bigl[\Phi_{7}(\lambda,\mu,\alpha)+\Phi_{8}(\lambda,\mu, \alpha )-\Phi_{9}(\lambda,\mu,\alpha)\bigr] \bigl\vert {}_{a}D_{q}f(a) \bigr\vert \\ &\quad {} +m\bigl[\Phi_{4}(\lambda,\mu)+\Phi_{5}(\lambda, \mu)-\Phi_{6}(\lambda,\mu )-\Phi_{7}(\lambda,\mu,\alpha) \\ &\quad {} -\Phi_{8}(\lambda,\mu,\alpha)+\Phi_{9}(\lambda, \mu,\alpha)\bigr] \biggl\vert {}_{a}D_{q}f\biggl( \frac{b}{m}\biggr) \biggr\vert \biggr\} , \end{aligned} \\ & \begin{aligned}\Phi_{1}(\lambda,\mu,\alpha)&= \int_{0}^{\mu}t^{\alpha} \bigl\vert qt-( \lambda -\lambda\mu) \bigr\vert \,{}_{0}\mathrm{d}_{q}t \\ &= \textstyle\begin{cases} \frac{\mu^{\alpha+1}(1-q)(\lambda-\lambda\mu)}{1-q^{\alpha+1}}-\frac {q\mu^{\alpha+2}(1-q)}{1-q^{\alpha+2}}, &(\lambda+q)\mu\leq\lambda, \\ \frac{2(1-q)^{2}(\lambda-\lambda\mu)^{\alpha+2}}{(1-q^{\alpha +1})(1-q^{\alpha+2})}+\frac{q\mu^{\alpha+2}(1-q)}{1-q^{\alpha+2}}-\frac {\mu^{\alpha+1}(1-q)(\lambda-\lambda\mu)}{1-q^{\alpha+1}}, &(\lambda+q)\mu>\lambda, \end{cases}\displaystyle \end{aligned} \\ & \begin{aligned}[b] \Phi_{2}(\lambda,\mu,\alpha)&= \int_{0}^{1} t^{\alpha} \bigl\vert qt-(1- \lambda\mu ) \bigr\vert \,{}_{0}\mathrm{d}_{q}t \\ &= \textstyle\begin{cases} \frac{(1-q)(1-\lambda\mu)}{1-q^{\alpha+1}}-\frac{q(1-q)}{1-q^{\alpha+2}}, &\lambda\mu+q\leq1, \\ \frac{2(1-q)^{2}(1-\lambda\mu)^{\alpha+2}}{(1-q^{\alpha+1})(1-q^{\alpha +2})}+\frac{q(1-q)}{1-q^{\alpha+2}}-\frac{(1-q)(1-\lambda\mu )}{1-q^{\alpha+1}}, &\lambda\mu+q>1, \end{cases}\displaystyle \end{aligned} \end{aligned}$$
(3.1)
$$\begin{aligned}& \begin{aligned} \Phi_{3}(\lambda,\mu,\alpha)&= \int_{0}^{\mu}t^{\alpha} \bigl\vert qt-(1- \lambda\mu ) \bigr\vert \,{}_{0}\mathrm{d}_{q}t \\ &= \textstyle\begin{cases} \frac{\mu^{\alpha+1}(1-\lambda\mu)(1-q)}{1-q^{\alpha+1}}-\frac{q\mu ^{\alpha+2}(1-q)}{1-q^{\alpha+2}}, &(\lambda+q)\mu\leq1, \\ \frac{2(1-q)^{2}(1-\lambda\mu)^{\alpha+2}}{(1-q^{\alpha+1})(1-q^{\alpha +2})}+\frac{q\mu^{\alpha+2}(1-q)}{1-q^{\alpha+2}}-\frac{\mu^{\alpha +1}(1-\lambda\mu)(1-q)}{1-q^{\alpha+1}}, &(\lambda+q)\mu> 1, \end{cases}\displaystyle \end{aligned} \\ & \begin{aligned} \Phi_{4}(\lambda,\mu)&= \int_{0}^{\mu}\bigl\vert qt-(\lambda-\lambda\mu) \bigr\vert \,{}_{0}\mathrm{d}_{q}t \\ &= \textstyle\begin{cases} \lambda\mu(1-\mu)-\frac{q\mu^{2}}{1+q}, &(\lambda+q)\mu\leq\lambda, \\ \frac{2(\lambda-\lambda\mu)^{2}}{1+q}+\frac{q\mu^{2}}{1+q}- \lambda\mu (1-\mu), &(\lambda+q)\mu>\lambda, \end{cases}\displaystyle \end{aligned} \\ & \begin{aligned}[b] \Phi_{5}(\lambda,\mu)&= \int_{0}^{1} \bigl\vert qt-(1-\lambda\mu) \bigr\vert \,{}_{0}\mathrm {d}_{q}t \\ &= \textstyle\begin{cases} \frac{1}{1+q}-\lambda\mu, &\lambda\mu+q\leq1, \\ \frac{2(1-\lambda\mu)^{2}}{1+q}+\lambda\mu-\frac{1}{1+q}, &\lambda\mu+q>1, \end{cases}\displaystyle \end{aligned} \end{aligned}$$
(3.2)
$$\begin{aligned}& \begin{aligned} \Phi_{6}(\lambda,\mu) & = \int_{0}^{\mu}\bigl\vert qt-(1-\lambda\mu) \bigr\vert \,{}_{0}\mathrm{d}_{q}t \\ & = \textstyle\begin{cases} \mu(1-\lambda\mu)-\frac{q\mu^{2}}{1+q}, &(\lambda+q)\mu\leq1, \\ \frac{2(1-\lambda\mu)^{2}}{1+q}+\frac{q\mu^{2}}{1+q}-\mu(1-\lambda\mu), &(\lambda+q)\mu> 1, \end{cases}\displaystyle \end{aligned} \\ & \begin{aligned} &\Phi_{7}(\lambda,\mu,\alpha) \\ &\quad = \int_{0}^{\mu}(1-t)^{\alpha} \bigl\vert qt-( \lambda-\lambda\mu) \bigr\vert \,{}_{0}\mathrm {d}_{q}t \\ &\quad = \textstyle\begin{cases} (1-q)\mu\sum_{n=0}^{\infty}q^{n} (\lambda-\lambda\mu-q^{n+1}\mu ) (1-q^{n}\mu )^{\alpha}, &(\lambda+q)\mu\leq\lambda, \\ \left [ \textstyle\begin{array}{l} 2(1-q)(\lambda-\lambda\mu)^{2}\sum_{n=0}^{\infty}q^{n-1} (1-q^{n} ) [1-q^{n-1}(\lambda-\lambda\mu) ]^{\alpha}\\ \quad {}-(1-q)\mu\sum_{n=0}^{\infty}q^{n} (\lambda-\lambda\mu-q^{n+1}\mu ) (1-q^{n}\mu )^{\alpha} \end{array}\displaystyle \right ], &(\lambda+q)\mu>\lambda, \end{cases}\displaystyle \end{aligned} \\ & \begin{aligned}[b] &\Phi_{8}(\lambda,\mu,\alpha) \\ &\quad = \int_{0}^{1} (1-t)^{\alpha} \bigl\vert qt-(1-\lambda\mu) \bigr\vert \,{}_{0}\mathrm {d}_{q}t \\ &\quad = \textstyle\begin{cases} (1-q)\sum_{n=0}^{\infty}q^{n} (1-\lambda\mu-q^{n+1} ) (1-q^{n} )^{\alpha}, &\lambda\mu+q\leq1, \\ \left [ \textstyle\begin{array}{l} 2(1-q)(1-\lambda\mu)^{2}\sum_{n=0}^{\infty}q^{n-1} (1-q^{n} ) [1-q^{n-1}(1-\lambda\mu) ]^{\alpha}\\ \quad {}-(1-q)\sum_{n=0}^{\infty}q^{n} (1-\lambda\mu-q^{n+1} ) (1-q^{n} )^{\alpha} \end{array}\displaystyle \right ], &\lambda\mu+q>1, \end{cases}\displaystyle \end{aligned} \end{aligned}$$
(3.3)
and
$$ \begin{aligned} &\Phi_{9}(\lambda,\mu,\alpha) \\ &\quad = \int_{0}^{\mu}(1-t)^{\alpha} \bigl\vert qt-(1-\lambda\mu) \bigr\vert \,{}_{0}\mathrm {d}_{q}t \\ &\quad = \textstyle\begin{cases} (1-q)\mu\sum_{n=0}^{\infty}q^{n} (1-\lambda\mu-q^{n+1}\mu ) (1-q^{n}\mu )^{\alpha}, &(\lambda+q)\mu\leq1, \\ \left [ \textstyle\begin{array}{l} 2(1-q)(1-\lambda\mu)^{2}\sum_{n=0}^{\infty}q^{n-1} (1-q^{n} ) [1-q^{n-1}(1-\lambda\mu) ]^{\alpha}\\ \quad {}-(1-q)\mu\sum_{n=0}^{\infty}q^{n} (1-\lambda\mu-q^{n+1}\mu ) (1-q^{n}\mu )^{\alpha} \end{array}\displaystyle \right ], &(\lambda+q)\mu>1. \end{cases}\displaystyle \end{aligned} $$
Proof
From Lemma 2.1, utilizing the property of the modulus and the \((\alpha,m)\)-convexity of \(|{}_{a}D_{q}f|\), we have
$$\begin{aligned} & \biggl\vert \lambda\bigl[\mu f(b)+(1-\mu)f(a)\bigr]+(1-\lambda)f\bigl(\mu b+(1-\mu)a\bigr)-\frac{1}{b-a} \int_{a}^{b}f(x)\,{}_{a} \mathrm{d}_{q}x \biggr\vert \\ &\quad \leq(b-a) \biggl\{ \int_{0}^{\mu} \vert qt+\lambda\mu-\lambda \vert \bigl\vert {}_{a}D_{q}f\bigl(tb+(1-t)a\bigr) \bigr\vert \,{}_{0}\mathrm{d}_{q}t \\ &\qquad {} + \int_{\mu}^{1} \vert qt+\lambda\mu-1 \vert \bigl\vert {}_{a}D_{q}f\bigl(tb+(1-t)a \bigr) \bigr\vert \,{}_{0}\mathrm{d}_{q}t \biggr\} \\ &\quad \leq(b-a) \biggl\{ \int_{0}^{\mu}\bigl\vert qt-(\lambda-\lambda\mu) \bigr\vert \biggl[t^{\alpha}\bigl\vert {}_{a}D_{q}f(b) \bigr\vert +m\bigl(1-t^{\alpha}\bigr) \biggl\vert {}_{a}D_{q}f \biggl(\frac {a}{m}\biggr) \biggr\vert \biggr]\,{}_{0} \mathrm{d}_{q}t \\ &\qquad {} + \int_{\mu}^{1} \bigl\vert qt-(1-\lambda\mu) \bigr\vert \biggl[t^{\alpha}\bigl\vert {}_{a}D_{q}f(b) \bigr\vert +m\bigl(1-t^{\alpha}\bigr) \biggl\vert {}_{a}D_{q}f \biggl(\frac{a}{m}\biggr) \biggr\vert \biggr]\,{}_{0} \mathrm{d}_{q}t \biggr\} \\ &\quad =(b-a) \biggl\{ \int_{0}^{\mu}\bigl\vert qt-(\lambda-\lambda\mu) \bigr\vert \biggl[t^{\alpha}\bigl\vert {}_{a}D_{q}f(b) \bigr\vert +m\bigl(1-t^{\alpha}\bigr) \biggl\vert {}_{a}D_{q}f \biggl(\frac {a}{m}\biggr) \biggr\vert \biggr]\,{}_{0} \mathrm{d}_{q}t \\ &\qquad {} + \int_{0}^{1} \bigl\vert qt-(1-\lambda\mu) \bigr\vert \biggl[t^{\alpha}\bigl\vert {}_{a}D_{q}f(b) \bigr\vert +m\bigl(1-t^{\alpha}\bigr) \biggl\vert {}_{a}D_{q}f \biggl(\frac{a}{m}\biggr) \biggr\vert \biggr]\,{}_{0} \mathrm{d}_{q}t \\ &\qquad {} - \int_{0}^{\mu}\bigl\vert qt-(1-\lambda\mu) \bigr\vert \biggl[t^{\alpha}\bigl\vert {}_{a}D_{q}f(b) \bigr\vert +m\bigl(1-t^{\alpha}\bigr) \biggl\vert {}_{a}D_{q}f \biggl(\frac{a}{m}\biggr) \biggr\vert \biggr]\,{}_{0} \mathrm{d}_{q}t \biggr\} \\ &\quad =(b-a) \biggl\{ \biggl[ \int_{0}^{\mu}t^{\alpha}\bigl\vert qt-( \lambda-\lambda\mu) \bigr\vert \,{}_{0}\mathrm{d}_{q}t + \int_{0}^{1} t^{\alpha}\bigl\vert qt-(1- \lambda\mu) \bigr\vert \,{}_{0}\mathrm{d}_{q}t \\ &\qquad {} - \int_{0}^{\mu}t^{\alpha}\bigl\vert qt-(1- \lambda\mu) \bigr\vert \,{}_{0}\mathrm{d}_{q}t \biggr] \bigl\vert {}_{a}D_{q}f(b) \bigr\vert \\ &\qquad {} +m \biggl[ \int_{0}^{\mu}\bigl\vert qt-(\lambda-\lambda\mu) \bigr\vert \,{}_{0}\mathrm{d}_{q}t + \int_{0}^{1} \bigl\vert qt-(1-\lambda\mu) \bigr\vert \,{}_{0}\mathrm{d}_{q}t \\ &\qquad {} - \int_{0}^{\mu}\bigl\vert qt-(1-\lambda\mu) \bigr\vert \,{}_{0}\mathrm{d}_{q}t - \int_{0}^{\mu}t^{\alpha}\bigl\vert qt-( \lambda-\lambda\mu) \bigr\vert \,{}_{0}\mathrm {d}_{q}t \\ &\qquad {} - \int_{0}^{1} t^{\alpha}\bigl\vert qt-(1- \lambda\mu) \bigr\vert \,{}_{0}\mathrm{d}_{q}t + \int_{0}^{\mu}t^{\alpha}\bigl\vert qt-(1- \lambda\mu) \bigr\vert \,{}_{0}\mathrm{d}_{q}t \biggr] \biggl\vert {}_{a}D_{q}f\biggl(\frac{a}{m}\biggr) \biggr\vert \biggr\} . \end{aligned}$$
Similarly, we get
$$\begin{aligned} & \biggl\vert \lambda\bigl[\mu f(b)+(1-\mu)f(a)\bigr]+(1-\lambda)f\bigl(\mu b+(1-\mu)a\bigr)-\frac{1}{b-a} \int_{a}^{b}f(x)\,{}_{a} \mathrm{d}_{q}x \biggr\vert \\ &\quad \leq(b-a) \biggl\{ \biggl[ \int_{0}^{\mu}(1-t)^{\alpha}\bigl\vert qt-( \lambda-\lambda \mu) \bigr\vert \,{}_{0}\mathrm{d}_{q}t + \int_{0}^{1} (1-t)^{\alpha}\bigl\vert qt-(1-\lambda\mu) \bigr\vert \,{}_{0}\mathrm{d}_{q}t \\ &\qquad {} - \int_{0}^{\mu}(1-t)^{\alpha}\bigl\vert qt-(1-\lambda\mu) \bigr\vert \,{}_{0}\mathrm {d}_{q}t \biggr] \bigl\vert {}_{a}D_{q}f(a) \bigr\vert \\ &\qquad {} +m\biggl[ \int_{0}^{\mu}\bigl\vert qt-(\lambda-\lambda\mu) \bigr\vert \,{}_{0}\mathrm{d}_{q}t + \int_{0}^{1} \bigl\vert qt-(1-\lambda\mu) \bigr\vert \,{}_{0}\mathrm{d}_{q}t \\ &\qquad {} - \int_{0}^{\mu}\bigl\vert qt-(1-\lambda\mu) \bigr\vert \,{}_{0}\mathrm{d}_{q}t - \int_{0}^{\mu}(1-t)^{\alpha}\bigl\vert qt-( \lambda-\lambda\mu) \bigr\vert \,{}_{0}\mathrm {d}_{q}t \\ &\qquad {} - \int_{0}^{1} (1-t)^{\alpha}\bigl\vert qt-(1-\lambda\mu) \bigr\vert \,{}_{0}\mathrm{d}_{q}t + \int_{0}^{\mu}(1-t)^{\alpha}\bigl\vert qt-(1-\lambda\mu) \bigr\vert \,{}_{0}\mathrm {d}_{q}t \biggr] \biggl\vert {}_{a}D_{q}f\biggl(\frac{b}{m} \biggr) \biggr\vert \biggr\} . \end{aligned}$$
Using Lemma 2.3, Lemma 2.4 and Lemma 2.5, we get the desired result. This completes the proof. □
Corollary 3.1
In Theorem 3.2, putting \(\mu=\frac{1}{1+q}\), we have
$$\begin{aligned} & \biggl\vert \lambda\frac{qf(a)+f(b)}{1+q}+(1-\lambda)f \biggl(\frac {qa+b}{1+q} \biggr)-\frac{1}{b-a} \int_{a}^{b}f(x)\,{}_{a} \mathrm{d}_{q}x \biggr\vert \\ &\quad \leq\min \biggl\{ \mathcal{H}_{1} \biggl(\lambda, \frac{1}{1+q},\alpha,m \biggr),\mathcal{H}_{2} \biggl(\lambda, \frac{1}{1+q},\alpha,m \biggr) \biggr\} . \end{aligned}$$
Remark 3.1
Consider Corollary 3.1.
(i) Putting \(\lambda=0\), we get the midpoint-like integral inequality
$$\begin{aligned} & \biggl\vert f \biggl(\frac{qa+b}{1+q} \biggr)-\frac{1}{b-a} \int _{a}^{b}f(x)\,{}_{a} \mathrm{d}_{q}x \biggr\vert \\ &\quad \leq\min \biggl\{ \mathcal{H}_{1} \biggl(0,\frac{1}{1+q}, \alpha,m \biggr),\mathcal{H}_{2} \biggl(0,\frac{1}{1+q},\alpha,m \biggr) \biggr\} , \end{aligned}$$
where
$$\begin{aligned} &\mathcal{H}_{1} \biggl(0,\frac{1}{1+q},\alpha,m \biggr) \\ &\quad =(b-a) \biggl\{ \frac{[(1+q)^{\alpha+2}-(1+q^{\alpha +2})](1-q)^{2}}{(1+q)^{\alpha+2}(1-q^{\alpha+1})(1-q^{\alpha+2})} \bigl\vert {}_{a}D_{q}f(b) \bigr\vert \\ &\qquad {} +m \biggl[\frac{2q}{(1+q)^{3}}-\frac{[(1+q)^{\alpha+2}-(1+q^{\alpha +2})](1-q)^{2}}{(1+q)^{\alpha+2}(1-q^{\alpha+1})(1-q^{\alpha+2})} \biggr] \biggl\vert {}_{a}D_{q}f \biggl(\frac{a}{m} \biggr) \biggr\vert \biggr\} \end{aligned}$$
and
$$\begin{aligned} &\mathcal{H}_{2}\biggl(0,\frac{1}{1+q},\alpha,m\biggr) \\ &\quad = (b-a)\biggl\{ \biggl[\Phi_{7}\biggl(0,\frac{1}{1+q}, \alpha\biggr)+\Phi _{8}\biggl(0,\frac{1}{1+q},\alpha\biggr)- \Phi_{9}\biggl(0,\frac{1}{1+q},\alpha \biggr)\biggr] \bigl\vert {}_{a}D_{q}f(a) \bigr\vert \\ &\qquad {} +m\biggl[\frac{2q}{(1+q)^{3}}-\Phi_{7}\biggl(0, \frac{1}{1+q},\alpha \biggr)-\Phi_{8}\biggl(0,\frac{1}{1+q}, \alpha\biggr) \\ &\qquad {} +\Phi_{9}\biggl(0,\frac{1}{1+q},\alpha\biggr)\biggr] \biggl\vert {}_{a}D_{q}f \biggl(\frac{b}{m}\biggr) \biggr\vert \biggr\} . \end{aligned}$$
Specially, taking \(\alpha=1=m\), we obtain
$$\begin{aligned} & \biggl\vert f \biggl(\frac{qa+b}{1+q} \biggr)-\frac{1}{b-a} \int _{a}^{b}f(x)\,{}_{a} \mathrm{d}_{q}x \biggr\vert \\ &\quad \leq(b-a) \biggl\{ \frac{3q}{(1+q)^{3}(1+q+q^{2})} \bigl\vert {}_{a}D_{q}f(b) \bigr\vert +\frac{-q+2q^{2}+2q^{3}}{(1+q)^{3}(1+q+q^{2})} \bigl\vert {}_{a}D_{q}f(a) \bigr\vert \biggr\} , \end{aligned}$$
which is established by Alp et al. in [2, Theorem 13].
(ii) Putting \(\lambda=\frac{1}{3}\) and \(\alpha=1=m\), we get the Simpson-like integral inequality
$$\begin{aligned} & \biggl\vert \frac{1}{3} \biggl[\frac{qf(a)+f(b)}{1+q}+2f \biggl( \frac {qa+b}{1+q} \biggr) \biggr]-\frac{1}{b-a} \int_{a}^{b}f(x)\,{}_{a} \mathrm{d}_{q}x \biggr\vert \\ &\quad \leq\min \biggl\{ \mathcal{H}_{1} \biggl(\frac{1}{3}, \frac{1}{1+q},1,1 \biggr),\mathcal{H}_{2} \biggl( \frac{1}{3},\frac{1}{1+q},1,1 \biggr) \biggr\} . \end{aligned}$$
Specially, if \(q\rightarrow1^{-}\), then we obtain
$$ \biggl\vert \frac{1}{3} \biggl[\frac{f(a)+f(b)}{2}+2f \biggl( \frac{a+b}{2} \biggr) \biggr]-\frac{1}{b-a} \int_{a}^{b}f(x)\, \mathrm{d}x \biggr\vert \leq \frac{5(b-a)}{72} \bigl[ \bigl\vert f'(b) \bigr\vert + \bigl\vert f'(a) \bigr\vert \bigr], $$
which is established by Alomari et al. in [1, Corollary 1].
(iii) Putting \(\lambda=\frac{1}{2}\) and \(\alpha=1=m\), we get the averaged midpoint-trapezoid-like integral inequality
$$\begin{aligned} & \biggl\vert \frac{1}{2} \biggl[\frac{qf(a)+f(b)}{1+q}+f \biggl( \frac {qa+b}{1+q} \biggr) \biggr]-\frac{1}{b-a} \int_{a}^{b}f(x)\,{}_{a} \mathrm{d}_{q}x \biggr\vert \\ &\quad \leq\min \biggl\{ \mathcal{H}_{1} \biggl(\frac{1}{2}, \frac{1}{1+q},1,1 \biggr),\mathcal{H}_{2} \biggl( \frac{1}{2},\frac{1}{1+q},1,1 \biggr) \biggr\} . \end{aligned}$$
Specially, if \(q\rightarrow1^{-}\), then we obtain
$$ \biggl\vert \frac{1}{2}\biggl[\frac{f(a)+f(b)}{2}+f\biggl( \frac{a+b}{2} \biggr)\biggr]-\frac{1}{b-a} \int_{a}^{b}f(x)\mathrm{d}x \biggr\vert \leq \frac{b-a}{16} \bigl[ \bigl\vert f'(b) \bigr\vert + \bigl\vert f'(a) \bigr\vert \bigr], $$
which is established by Xi and Qi in [30, Corollary 3.4].
(iv) Putting \(\lambda=1\), we get the trapezoid-like integral inequality
$$\begin{aligned} & \biggl\vert \frac{qf(a)+f(b)}{1+q}-\frac{1}{b-a} \int_{a}^{b}f(x)\,{}_{a}\mathrm {d}_{q}x \biggr\vert \\ &\quad \leq\min \biggl\{ \mathcal{H}_{1}\biggl(1,\frac{1}{1+q}, \alpha,m \biggr),\mathcal{H}_{2}\biggl(1,\frac{1}{1+q},\alpha,m \biggr) \biggr\} , \end{aligned}$$
where
$$\begin{aligned} &\mathcal{H}_{1}\biggl(1,\frac{1}{1+q},\alpha,m\biggr) \\ &\quad = (b-a) \biggl\{ \frac{2q^{\alpha+2}(1-q)^{2}+q^{2}(1+q)^{\alpha +1}(1-q)(1-q^{\alpha})}{(1+q)^{\alpha+2}(1-q^{\alpha+1})(1-q^{\alpha +2})} \bigl\vert {}_{a}D_{q}f(b) \bigr\vert \\ &\qquad {} +m\biggl[\frac{2q^{2}}{(1+q)^{3}}-\frac{2q^{\alpha +2}(1-q)^{2}+q^{2}(1+q)^{\alpha+1}(1-q)(1-q^{\alpha})}{(1+q)^{\alpha +2}(1-q^{\alpha+1})(1-q^{\alpha+2})}\biggr] \biggl\vert {}_{a}D_{q}f \biggl(\frac {a}{m} \biggr) \biggr\vert \biggr\} \end{aligned}$$
and
$$\begin{aligned} &\mathcal{H}_{2} \biggl(1,\frac{1}{1+q},\alpha,m \biggr) \\ &\quad = (b-a)\biggl\{ \biggl[\Phi_{7} \biggl(1,\frac{1}{1+q}, \alpha \biggr)+\Phi _{8} \biggl(1,\frac{1}{1+q},\alpha \biggr)- \Phi_{9} \biggl(1,\frac{1}{1+q},\alpha \biggr) \biggr] \bigl\vert {}_{a}D_{q}f(a) \bigr\vert \\ &\qquad {} +m \biggl[\frac{2q^{2}}{(1+q)^{3}}-\Phi_{7} \biggl(1, \frac{1}{1+q},\alpha \biggr)-\Phi_{8} \biggl(1,\frac{1}{1+q}, \alpha \biggr) \\ &\qquad {} +\Phi_{9} \biggl(1,\frac{1}{1+q},\alpha \biggr) \biggr] \biggl\vert {}_{a}D_{q}f \biggl(\frac{b}{m} \biggr) \biggr\vert \biggr\} . \end{aligned}$$
Specially, taking \(\alpha=1=m\), we obtain
$$\begin{aligned} & \biggl\vert \frac{qf(a)+f(b)}{1+q}-\frac{1}{b-a} \int_{a}^{b}f(x)\,{}_{a}\mathrm {d}_{q}x \biggr\vert \\ &\quad \leq(b-a) \biggl\{ \frac{q^{2}(1+4q+q^{2})}{(1+q)^{4}(1+q+q^{2})} \bigl\vert {}_{a}D_{q}f(b) \bigr\vert +\frac{q^{2}(1+3q^{2}+2q^{3})}{(1+q)^{4}(1+q+q^{2})} \bigl\vert {}_{a}D_{q}f(a) \bigr\vert \biggr\} , \end{aligned}$$
which is established by Sudsutad et al. in [26, Theorem 4.1].
If \(|{}_{a}D_{q}f|^{r}\) for \(r\geq1\) is \((\alpha,m)\)-convex, then the following theorem can be obtained.
Theorem 3.3
For \(0\leq a< b\) and some fixed \(m\in(0,1]\), let \(f: [a,\frac {b}{m} ]\rightarrow\mathbb{R}\) be a continuous and q-differentiable function on \((a,\frac{b}{m} )\), and let \({}_{a}D_{q}f\) be integrable on \([a,\frac{b}{m} ]\) with \(0< q <1\). Then the inequality
$$\begin{aligned} & \biggl\vert \lambda \bigl[\mu f(b)+(1-\mu)f(a) \bigr]+(1- \lambda)f \bigl(\mu b+(1-\mu)a \bigr)-\frac{1}{b-a} \int_{a}^{b}f(x)\,{}_{a} \mathrm{d}_{q}x \biggr\vert \\ &\quad \leq(b-a)\min \bigl\{ \mathcal{J}_{1}(\lambda,\mu,\alpha,m,r), \mathcal {J}_{2}(\lambda,\mu,\alpha,m,r) \bigr\} \end{aligned}$$
holds for all \(\lambda,\mu\in[0,1]\) if \(|{}_{a}D_{q}f|^{r}\) for \(r\geq1\) is \((\alpha,m)\)-convex on \([a,\frac{b}{m} ]\) with \(\alpha,m\in (0,1]^{2}\), where
$$\begin{aligned}& \begin{aligned} &\mathcal{J}_{1}( \lambda,\mu,\alpha,m,r) \\ &\quad =\Phi_{5}^{1-\frac{1}{r}}(\lambda,\mu) \biggl[ \Phi_{2}(\lambda,\mu,\alpha ) \bigl\vert {}_{a}D_{q}f(b) \bigr\vert ^{r} +m\bigl(\Phi_{5}(\lambda,\mu)- \Phi_{2}(\lambda,\mu,\alpha)\bigr) \biggl\vert {}_{a}D_{q}f \biggl(\frac{a}{m}\biggr) \biggr\vert ^{r} \biggr]^{\frac{1}{r}} \\ &\qquad {} +(1-\lambda)\mu^{1-\frac{1}{r}} \biggl[\Upsilon_{1}(\mu, \alpha) \bigl\vert {}_{a}D_{q}f(b) \bigr\vert ^{r}+m\Upsilon_{2}(\mu,\alpha) \biggl\vert {}_{a}D_{q}f\biggl(\frac {a}{m}\biggr) \biggr\vert ^{r} \biggr]^{\frac{1}{r}}, \end{aligned} \\& \begin{aligned} &\mathcal{J}_{2}(\lambda,\mu, \alpha,m,r) \\ &\quad =\Phi_{5}^{1-\frac{1}{r}}(\lambda,\mu) \biggl[ \Phi_{8}(\lambda,\mu,\alpha ) \bigl\vert {}_{a}D_{q}f(a) \bigr\vert ^{r} +m\bigl(\Phi_{5}(\lambda,\mu)- \Phi_{8}(\lambda,\mu,\alpha)\bigr) \biggl\vert {}_{a}D_{q}f \biggl(\frac{b}{m}\biggr) \biggr\vert ^{r} \biggr]^{\frac{1}{r}} \\ &\qquad {} +(1-\lambda)\mu^{1-\frac{1}{r}} \biggl[\Upsilon_{3}(\mu, \alpha) \bigl\vert {}_{a}D_{q}f(a) \bigr\vert ^{r}+m\Upsilon_{4}(\mu,\alpha) \biggl\vert {}_{a}D_{q}f\biggl(\frac {b}{m}\biggr) \biggr\vert ^{r} \biggr]^{\frac{1}{r}}, \end{aligned} \\& \Upsilon_{1}(\mu,\alpha)= \int_{0}^{\mu}t^{\alpha} \,{}_{0} \mathrm{d}_{q}t=\frac {\mu^{\alpha+1}(1-q)}{1-q^{\alpha+1}}, \end{aligned}$$
(3.4)
$$\begin{aligned}& \Upsilon_{2}(\mu,\alpha)= \int_{0}^{\mu} \bigl(1-t^{\alpha} \bigr) \,{}_{0}\mathrm {d}_{q}t=\mu-\frac{\mu^{\alpha+1}(1-q)}{1-q^{\alpha+1}}, \end{aligned}$$
(3.5)
$$\begin{aligned}& \Upsilon_{3}(\mu,\alpha)= \int_{0}^{\mu}(1-t)^{\alpha} \,{}_{0}\mathrm {d}_{q}t=(1-q)\mu\sum _{n=0}^{\infty}q^{n} \bigl(1-q^{n}\mu \bigr)^{\alpha}, \end{aligned}$$
(3.6)
$$\begin{aligned}& \Upsilon_{4}(\mu,\alpha)= \int_{0}^{\mu} \bigl(1-(1-t)^{\alpha} \bigr) \,{}_{0}\mathrm{d}_{q}t=\mu-(1-q)\mu\sum _{n=0}^{\infty}q^{n} \bigl(1-q^{n}\mu \bigr)^{\alpha}, \end{aligned}$$
(3.7)
and \(\Phi_{2}(\lambda,\mu,\alpha)\), \(\Phi_{5}(\lambda,\mu)\), \(\Phi_{8}(\lambda ,\mu,\alpha)\) are defined by (3.1), (3.2) and (3.3), respectively.
Proof
Using Lemma 2.1 and the power mean inequality, we have
$$\begin{aligned} & \biggl\vert \lambda\bigl[\mu f(b)+(1-\mu)f(a)\bigr]+(1-\lambda)f\bigl(\mu b+(1-\mu)a\bigr)-\frac{1}{b-a} \int_{a}^{b}f(x)\,{}_{a} \mathrm{d}_{q}x \biggr\vert \\ &\quad \leq(b-a) \biggl\{ \biggl( \int_{0}^{1} \bigl\vert qt-(1-\lambda\mu) \bigr\vert \,{}_{0}\mathrm {d}_{q}t\biggr)^{1-\frac{1}{r}} \\ &\qquad {} \times\biggl( \int_{0}^{1} \bigl\vert qt-(1-\lambda\mu) \bigr\vert \bigl\vert {}_{a}D_{q}f \bigl(tb+(1-t)a\bigr) \bigr\vert ^{r}\,{}_{0}\mathrm{d}_{q}t \biggr)^{\frac{1}{r}} \\ &\qquad {} +(1-\lambda) \biggl( \int_{0}^{\mu}1 \,{}_{0} \mathrm{d}_{q}t\biggr)^{1-\frac{1}{r}} \biggl( \int_{0}^{\mu}\bigl\vert {}_{a}D_{q}f \bigl(tb+(1-t)a\bigr) \bigr\vert ^{r}\,{}_{0}\mathrm {d}_{q}t\biggr)^{\frac{1}{r}} \biggr\} . \end{aligned}$$
(3.8)
Utilizing the \((\alpha,m)\)-convexity of \(|{}_{a}D_{q}f|^{r}\), we get
$$\begin{aligned} & \int_{0}^{1} \bigl\vert qt-(1-\lambda\mu) \bigr\vert \bigl\vert {}_{a}D_{q}f\bigl(tb+(1-t)a \bigr) \bigr\vert ^{r}\,{}_{0}\mathrm{d}_{q}t \\ &\quad \leq \int_{0}^{1} \bigl\vert qt-(1-\lambda\mu) \bigr\vert \biggl[t^{\alpha} \bigl\vert {}_{a}D_{q}f(b) \bigr\vert ^{r}+m\bigl(1-t^{\alpha}\bigr) \biggl\vert {}_{a}D_{q}f\biggl(\frac{a}{m} \biggr) \biggr\vert ^{r} \biggr]\,{}_{0}\mathrm{d}_{q}t \\ & \quad = \biggl( \int_{0}^{1}t^{\alpha}\bigl\vert qt-(1- \lambda\mu) \bigr\vert \,{}_{0}\mathrm {d}_{q}t \biggr) \bigl\vert {}_{a}D_{q}f(b) \bigr\vert ^{r} \\ &\qquad {} +m \biggl( \int_{0}^{1} \bigl\vert qt-(1-\lambda\mu) \bigr\vert \,{}_{0}\mathrm{d}_{q}t- \int _{0}^{1}t^{\alpha} \bigl\vert qt-(1- \lambda\mu) \bigr\vert \,{}_{0}\mathrm{d}_{q}t \biggr) \biggl\vert {}_{a}D_{q}f\biggl(\frac{a}{m}\biggr) \biggr\vert ^{r} \end{aligned}$$
(3.9)
and
$$\begin{aligned} & \int_{0}^{\mu}\bigl\vert {}_{a}D_{q}f \bigl(tb+(1-t)a\bigr) \bigr\vert ^{r}\,{}_{0} \mathrm{d}_{q}t \\ &\quad \leq \int_{0}^{\mu}\biggl[t^{\alpha} \bigl\vert {}_{a}D_{q}f(b) \bigr\vert ^{r}+m \bigl(1-t^{\alpha }\bigr) \biggl\vert {}_{a}D_{q}f \biggl(\frac{a}{m}\biggr) \biggr\vert ^{r} \biggr] \,{}_{0}\mathrm{d}_{q}t \\ &\quad = \biggl( \int_{0}^{\mu}t^{\alpha}\,{}_{0} \mathrm{d}_{q}t \biggr) \bigl\vert {}_{a}D_{q}f(b) \bigr\vert ^{r} +m \biggl( \int_{0}^{\mu}\bigl(1-t^{\alpha}\bigr) \,{}_{0}\mathrm{d}_{q}t \biggr) \biggl\vert {}_{a}D_{q}f\biggl(\frac{a}{m}\biggr) \biggr\vert ^{r}. \end{aligned}$$
(3.10)
Using (3.9) and (3.10) in (3.8), we get
$$\begin{aligned} & \biggl\vert \lambda\bigl[\mu f(b)+(1-\mu)f(a)\bigr]+(1-\lambda)f\bigl(\mu b+(1-\mu)a\bigr)-\frac{1}{b-a} \int_{a}^{b}f(x)\,{}_{a} \mathrm{d}_{q}x \biggr\vert \\ &\quad \leq(b-a)\biggl\{ \biggl[ \int_{0}^{1} \bigl\vert qt-(1-\lambda\mu) \bigr\vert \,{}_{0}\mathrm {d}_{q}t\biggr]^{1-\frac{1}{r}} \\ &\qquad {} \times\biggl[\biggl( \int_{0}^{1}t^{\alpha}\bigl\vert qt-(1- \lambda\mu) \bigr\vert \,{}_{0}\mathrm{d}_{q}t\biggr) \bigl\vert {}_{a}D_{q}f(b) \bigr\vert ^{r} \\ &\qquad {} +m\biggl( \int_{0}^{1} \bigl\vert qt-(1-\lambda\mu) \bigr\vert \,{}_{0}\mathrm{d}_{q}t- \int _{0}^{1}t^{\alpha} \bigl\vert qt-(1- \lambda\mu) \bigr\vert \,{}_{0}\mathrm{d}_{q}t\biggr) \biggl\vert {}_{a}D_{q}f\biggl(\frac{a}{m}\biggr) \biggr\vert ^{r}\biggr]^{\frac{1}{r}} \\ &\qquad {} +(1-\lambda)\mu^{1-\frac{1}{r}}\biggl[\biggl( \int_{0}^{\mu}t^{\alpha }\,{}_{0} \mathrm{d}_{q}t\biggr) \bigl\vert {}_{a}D_{q}f(b) \bigr\vert ^{r} \\ &\qquad {} +m\biggl( \int_{0}^{\mu}\bigl(1-t^{\alpha}\bigr) \,{}_{0}\mathrm{d}_{q}t\biggr) \biggl\vert {}_{a}D_{q}f\biggl(\frac{a}{m}\biggr) \biggr\vert ^{r}\biggr]^{\frac{1}{r}}\biggr\} . \end{aligned}$$
(3.11)
Similarly, we get
$$\begin{aligned} & \int_{0}^{1} \bigl\vert qt-(1-\lambda\mu) \bigr\vert \bigl\vert {}_{a}D_{q}f\bigl(tb+(1-t)a \bigr) \bigr\vert ^{r}\,{}_{0}\mathrm{d}_{q}t \\ &\quad \leq \int_{0}^{1} \bigl\vert qt-(1-\lambda\mu) \bigr\vert \biggl[(1-t)^{\alpha} \bigl\vert {}_{a}D_{q}f(a) \bigr\vert ^{r}+m\bigl(1-(1-t)^{\alpha}\bigr) \biggl\vert {}_{a}D_{q}f\biggl(\frac {b}{m}\biggr) \biggr\vert ^{r} \biggr]\,{}_{0}\mathrm{d}_{q}t \\ &\quad = \biggl( \int_{0}^{1}(1-t)^{\alpha}\bigl\vert qt-(1- \lambda\mu) \bigr\vert \,{}_{0}\mathrm {d}_{q}t \biggr) \bigl\vert {}_{a}D_{q}f(a) \bigr\vert ^{r} \\ &\qquad {} +m \biggl( \int_{0}^{1} \bigl\vert qt-(1-\lambda\mu) \bigr\vert \,{}_{0}\mathrm{d}_{q}t- \int _{0}^{1}(1-t)^{\alpha} \bigl\vert qt-(1-\lambda\mu) \bigr\vert \,{}_{0}\mathrm{d}_{q}t \biggr) \\ &\qquad {}\times\biggl\vert {}_{a}D_{q}f\biggl(\frac{b}{m} \biggr) \biggr\vert ^{r} \end{aligned}$$
(3.12)
and
$$\begin{aligned} & \int_{0}^{\mu}\bigl\vert {}_{a}D_{q}f \bigl(tb+(1-t)a\bigr) \bigr\vert ^{r}\,{}_{0} \mathrm{d}_{q}t \\ &\quad \leq \int_{0}^{\mu}\biggl[(1-t)^{\alpha} \bigl\vert {}_{a}D_{q}f(a) \bigr\vert ^{r}+m \bigl(1-(1-t)^{\alpha}\bigr) \biggl\vert {}_{a}D_{q}f \biggl(\frac{b}{m}\biggr) \biggr\vert ^{r} \biggr] \,{}_{0}\mathrm{d}_{q}t \\ &\quad = \biggl( \int_{0}^{\mu}(1-t)^{\alpha}\,{}_{0} \mathrm{d}_{q}t \biggr) \bigl\vert {}_{a}D_{q}f(a) \bigr\vert ^{r} \\ &\qquad {} +m \biggl( \int_{0}^{\mu}\bigl(1-(1-t)^{\alpha}\bigr) \,{}_{0}\mathrm{d}_{q}t \biggr) \biggl\vert {}_{a}D_{q}f\biggl(\frac{b}{m}\biggr) \biggr\vert ^{r}. \end{aligned}$$
(3.13)
Using (3.12) and (3.13) in (3.8), we get
$$\begin{aligned} & \biggl\vert \lambda\bigl[\mu f(b)+(1-\mu)f(a)\bigr]+(1-\lambda)f\bigl(\mu b+(1-\mu)a\bigr)-\frac{1}{b-a} \int_{a}^{b}f(x)\,{}_{a} \mathrm{d}_{q}x \biggr\vert \\ & \quad \leq(b-a) \biggl\{ \biggl[ \int_{0}^{1} \bigl\vert qt-(1-\lambda\mu) \bigr\vert \,{}_{0}\mathrm {d}_{q}t\biggr]^{1-\frac{1}{r}} \\ &\qquad {} \times\biggl[\biggl( \int_{0}^{1}(1-t)^{\alpha}\bigl\vert qt-(1- \lambda\mu) \bigr\vert \,{}_{0}\mathrm{d}_{q}t\biggr) \bigl\vert {}_{a}D_{q}f(a) \bigr\vert ^{r} \\ &\qquad {} +m\biggl( \int_{0}^{1} \bigl\vert qt-(1-\lambda\mu) \bigr\vert \,{}_{0}\mathrm{d}_{q}t- \int _{0}^{1}(1-t)^{\alpha} \bigl\vert qt-(1-\lambda\mu) \bigr\vert \,{}_{0}\mathrm{d}_{q}t \biggr) \biggl\vert {}_{a}D_{q}f\biggl(\frac{b}{m} \biggr) \biggr\vert ^{r}\biggr]^{\frac{1}{r}} \\ &\qquad {} +(1-\lambda)\mu^{1-\frac{1}{r}}\biggl[\biggl( \int_{0}^{\mu}(1-t)^{\alpha }\,{}_{0} \mathrm{d}_{q}t\biggr) \bigl\vert {}_{a}D_{q}f(a) \bigr\vert ^{r} \\ &\qquad {} +m\biggl( \int_{0}^{\mu}\bigl(1-(1-t)^{\alpha}\bigr) \,{}_{0}\mathrm{d}_{q}t \biggr) \biggl\vert {}_{a}D_{q}f\biggl(\frac{b}{m}\biggr) \biggr\vert ^{r}\biggr]^{\frac{1}{r}} \biggr\} . \end{aligned}$$
(3.14)
From (3.11) and (3.14), utilizing (3.1), (3.2), (3.3) and Lemma 2.2, we can deduce the desired result. The proof is complete. □
If \(|{}_{a}D_{q}f|^{r}\) for \(r>1\) is \((\alpha,m)\)-convex, then the following theorem can be obtained.
Theorem 3.4
For \(0\leq a< b\) and some fixed \(m\in(0,1]\), let \(f: [a,\frac {b}{m} ]\rightarrow\mathbb{R}\) be a continuous and q-differentiable function on \((a,\frac{b}{m} )\), and let \({}_{a}D_{q}f\) be integrable on \([a,\frac{b}{m} ]\) with \(0< q <1\). Then the inequality
$$\begin{aligned} & \biggl\vert \lambda \bigl[\mu f(b)+(1-\mu)f(a) \bigr]+(1-\lambda)f \bigl(\mu b+(1-\mu)a \bigr)-\frac{1}{b-a} \int_{a}^{b}f(x)\,{}_{a} \mathrm{d}_{q}x \biggr\vert \\ &\quad \leq(b-a)\min \bigl\{ \mathcal{K}_{1}(\lambda,\mu,\alpha,m), \mathcal {K}_{2}(\lambda,\mu,\alpha,m) \bigr\} \end{aligned}$$
holds for all \(\lambda,\mu\in[0,1]\) if \(|{}_{a}D_{q}f|^{r}\) for \(r> 1\) with \(r^{-1}+s^{-1}=1\) is \((\alpha,m)\)-convex on \([a,\frac{b}{m} ]\) with \(\alpha,m\in(0,1]^{2}\), where
$$\begin{aligned}& \begin{aligned} &\mathcal{K}_{1}(\lambda,\mu,\alpha,m) \\ &\quad =\Psi_{1}^{\frac{1}{s}}(\lambda,\mu) \biggl[ \Psi_{2}(\alpha) \bigl\vert {}_{a}D_{q}f(b) \bigr\vert ^{r}+m\bigl(1-\Psi_{2}(\alpha )\bigr) \biggl\vert {}_{a}D_{q}f\biggl(\frac{a}{m}\biggr) \biggr\vert ^{r}\biggr]^{\frac{1}{r}} \\ &\qquad {} +(1-\lambda)\mu^{\frac{1}{s}} \biggl[\Upsilon_{1}(\mu, \alpha) \bigl\vert {}_{a}D_{q}f(b) \bigr\vert ^{r}+m\Upsilon_{2}(\mu ,\alpha) \biggl\vert {}_{a}D_{q}f\biggl(\frac{a}{m}\biggr) \biggr\vert ^{r}\biggr]^{\frac{1}{r}}, \end{aligned} \\& \begin{aligned} &\mathcal{K}_{2}(\lambda,\mu,\alpha,m) \\ &\quad =\Psi_{1}^{\frac{1}{s}}(\lambda,\mu) \biggl[ \Psi_{3}(\alpha) \bigl\vert {}_{a}D_{q}f(a) \bigr\vert ^{r}+m\bigl(1-\Psi_{3}(\alpha )\bigr) \biggl\vert {}_{a}D_{q}f\biggl(\frac{b}{m}\biggr) \biggr\vert ^{r}\biggr]^{\frac{1}{r}} \\ &\qquad {} +(1-\lambda)\mu^{\frac{1}{s}} \biggl[\Upsilon_{3}(\mu, \alpha) \bigl\vert {}_{a}D_{q}f(a) \bigr\vert ^{r}+m\Upsilon_{4}(\mu ,\alpha) \biggl\vert {}_{a}D_{q}f\biggl(\frac{b}{m}\biggr) \biggr\vert ^{r}\biggr]^{\frac{1}{r}}, \end{aligned} \\& \begin{aligned} \Psi_{1}(\lambda,\mu)&= \int_{0}^{1} \bigl\vert qt-(1-\lambda\mu) \bigr\vert ^{s}\,{}_{0}\mathrm{d}_{q}t \\ &= \textstyle\begin{cases} (1-q)\sum_{n=0}^{\infty}q^{n}(1-\lambda\mu-q^{n+1})^{s}, &0\leq\lambda\mu\leq1-q, \\ \left [ \textstyle\begin{array}{l} (1-q)(1-\lambda\mu)^{s+1}\sum_{n=0}^{\infty}q^{n-1}(1-q^{n})^{s}\\ \quad {}+(1-q)\sum_{n=0}^{\infty}q^{n}(q^{n+1}-1+\lambda\mu)^{s}\\ \quad {}-(1-q)(1-\lambda\mu)^{s+1}\sum_{n=0}^{\infty}q^{n-1}(q^{n}-1)^{s} \end{array}\displaystyle \right ], &1-q< \lambda\mu\leq1, \end{cases}\displaystyle \end{aligned} \\& \Psi_{2}(\alpha)= \int_{0}^{1} t^{\alpha} \,{}_{0} \mathrm{d}_{q}t=\frac {1-q}{1-q^{\alpha+1}}, \\& \Psi_{3}(\alpha)= \int_{0}^{1} (1-t)^{\alpha} \,{}_{0}\mathrm{d}_{q}t=(1-q)\sum _{n=0}^{\infty}q^{n}\bigl(1-q^{n} \bigr)^{\alpha}, \end{aligned}$$
and \(\Upsilon_{1}(\mu,\alpha)\), \(\Upsilon_{2}(\mu,\alpha)\), \(\Upsilon_{3}(\mu ,\alpha)\), \(\Upsilon_{4}(\mu,\alpha)\) are defined by (3.4), (3.5), (3.6) and (3.7), respectively.
Proof
Using Lemma 2.1 and the Hölder inequality, we have
$$\begin{aligned} & \biggl\vert \lambda\bigl[\mu f(b)+(1-\mu)f(a)\bigr]+(1-\lambda)f\bigl(\mu b+(1-\mu)a\bigr)-\frac{1}{b-a} \int_{a}^{b}f(x)\,{}_{a} \mathrm{d}_{q}x \biggr\vert \\ &\quad \leq(b-a) \biggl\{ \biggl( \int_{0}^{1} \bigl\vert qt-(1-\lambda\mu) \bigr\vert ^{s}\,{}_{0}\mathrm{d}_{q}t \biggr)^{\frac{1}{s}} \\ &\qquad {} \times\biggl( \int_{0}^{1} \bigl\vert {}_{a}D_{q}f \bigl(tb+(1-t)a\bigr) \bigr\vert ^{r}\,{}_{0} \mathrm{d}_{q}t\biggr)^{\frac{1}{r}} \\ &\qquad {} +(1-\lambda) \biggl( \int_{0}^{\mu} 1^{s} \,{}_{0} \mathrm{d}_{q}t\biggr)^{\frac{1}{s}} \biggl( \int_{0}^{\mu} \bigl\vert {}_{a}D_{q}f \bigl(tb+(1-t)a\bigr) \bigr\vert ^{r}\,{}_{0}\mathrm {d}_{q}t\biggr)^{\frac{1}{r}} \biggr\} . \end{aligned}$$
(3.15)
Utilizing the \((\alpha,m)\)-convexity of \(|{}_{a}D_{q}f|^{r}\), we get
$$\begin{aligned} & \int_{0}^{1} \bigl\vert {}_{a}D_{q}f \bigl(tb+(1-t)a\bigr) \bigr\vert ^{r}\,{}_{0} \mathrm{d}_{q}t \\ &\quad \leq \int_{0}^{1} \biggl[t^{\alpha} \bigl\vert {}_{a}D_{q}f(b) \bigr\vert ^{r}+m \bigl(1-t^{\alpha }\bigr) \biggl\vert {}_{a}D_{q}f \biggl(\frac{a}{m}\biggr) \biggr\vert ^{r} \biggr] \,{}_{0}\mathrm{d}_{q}t \\ &\quad = \biggl( \int_{0}^{1} t^{\alpha} \,{}_{0} \mathrm{d}_{q}t \biggr) \bigl\vert {}_{a}D_{q}f(b) \bigr\vert ^{r}+m \biggl( \int_{0}^{1} \bigl(1-t^{\alpha}\bigr) \,{}_{0}\mathrm {d}_{q}t \biggr) \biggl\vert {}_{a}D_{q}f\biggl(\frac{a}{m}\biggr) \biggr\vert ^{r} \end{aligned}$$
(3.16)
and
$$\begin{aligned} & \int_{0}^{\mu} \bigl\vert {}_{a}D_{q}f \bigl(tb+(1-t)a\bigr) \bigr\vert ^{r}\,{}_{0}\mathrm {d}_{q}t \\ &\quad \leq \int_{0}^{\mu} \biggl[t^{\alpha} \bigl\vert {}_{a}D_{q}f(b) \bigr\vert ^{r}+m \bigl(1-t^{\alpha}\bigr) \biggl\vert {}_{a}D_{q}f \biggl(\frac{a}{m}\biggr) \biggr\vert ^{r} \biggr] \,{}_{0}\mathrm{d}_{q}t \\ &\quad = \biggl( \int_{0}^{\mu}t^{\alpha} \,{}_{0} \mathrm{d}_{q}t \biggr) \bigl\vert {}_{a}D_{q}f(b) \bigr\vert ^{r}+m \biggl( \int_{0}^{\mu}\bigl(1-t^{\alpha} \bigr) \,{}_{0}\mathrm{d}_{q}t \biggr) \biggl\vert {}_{a}D_{q}f\biggl(\frac{a}{m}\biggr) \biggr\vert ^{r}. \end{aligned}$$
(3.17)
Using (3.16) and (3.17) in (3.15), we get
$$\begin{aligned} & \biggl\vert \lambda\bigl[\mu f(b)+(1-\mu)f(a)\bigr]+(1-\lambda)f\bigl(\mu b+(1-\mu)a\bigr)-\frac{1}{b-a} \int_{a}^{b}f(x)\,{}_{a} \mathrm{d}_{q}x \biggr\vert \\ &\quad \leq(b-a) \biggl\{ \biggl( \int_{0}^{1} \bigl\vert qt-(1-\lambda\mu) \bigr\vert ^{s}\,{}_{0}\mathrm{d}_{q}t \biggr)^{\frac{1}{s}} \\ &\qquad {} \times\biggl[\biggl( \int_{0}^{1} t^{\alpha} \,{}_{0} \mathrm{d}_{q}t\biggr) \bigl\vert {}_{a}D_{q}f(b) \bigr\vert ^{r}+m\biggl( \int_{0}^{1} \bigl(1-t^{\alpha}\bigr) \,{}_{0}\mathrm {d}_{q}t\biggr) \biggl\vert {}_{a}D_{q}f\biggl(\frac{a}{m}\biggr) \biggr\vert ^{r}\biggr]^{\frac {1}{r}} \\ &\qquad {} +(1-\lambda)\mu^{\frac{1}{s}} \biggl[\biggl( \int_{0}^{\mu}t^{\alpha} \,{}_{0} \mathrm{d}_{q}t\biggr) \bigl\vert {}_{a}D_{q}f(b) \bigr\vert ^{r} \\ &\qquad {} +m\biggl( \int_{0}^{\mu}\bigl(1-t^{\alpha}\bigr) \,{}_{0}\mathrm{d}_{q}t\biggr) \biggl\vert {}_{a}D_{q}f\biggl(\frac{a}{m}\biggr) \biggr\vert ^{r}\biggr]^{\frac{1}{r}} \biggr\} . \end{aligned}$$
(3.18)
Similarly, we get
$$\begin{aligned} & \int_{0}^{1} \bigl\vert {}_{a}D_{q}f \bigl(tb+(1-t)a\bigr) \bigr\vert ^{r}\,{}_{0} \mathrm{d}_{q}t \\ &\quad \leq \int_{0}^{1} \biggl[(1-t)^{\alpha} \bigl\vert {}_{a}D_{q}f(a) \bigr\vert ^{r}+m \bigl(1-(1-t)^{\alpha}\bigr) \biggl\vert {}_{a}D_{q}f \biggl(\frac{b}{m}\biggr) \biggr\vert ^{r} \biggr] \,{}_{0}\mathrm{d}_{q}t \\ &\quad = \biggl( \int_{0}^{1} (1-t)^{\alpha} \,{}_{0}\mathrm{d}_{q}t \biggr) \bigl\vert {}_{a}D_{q}f(a) \bigr\vert ^{r} \\ &\qquad {} +m \biggl( \int_{0}^{1} \bigl(1-(1-t)^{\alpha}\bigr) \,{}_{0}\mathrm{d}_{q}t \biggr) \biggl\vert {}_{a}D_{q}f\biggl(\frac{b}{m}\biggr) \biggr\vert ^{r} \end{aligned}$$
(3.19)
and
$$\begin{aligned} & \int_{0}^{\mu} \bigl\vert {}_{a}D_{q}f \bigl(tb+(1-t)a\bigr) \bigr\vert ^{r}\,{}_{0}\mathrm {d}_{q}t \\ &\quad \leq \int_{0}^{\mu} \biggl[(1-t)^{\alpha} \bigl\vert {}_{a}D_{q}f(a) \bigr\vert ^{r}+m \bigl(1-(1-t)^{\alpha}\bigr) \biggl\vert {}_{a}D_{q}f \biggl(\frac{b}{m}\biggr) \biggr\vert ^{r} \biggr] \,{}_{0}\mathrm{d}_{q}t \\ &\quad = \biggl( \int_{0}^{\mu}(1-t)^{\alpha} \,{}_{0}\mathrm{d}_{q}t \biggr) \bigl\vert {}_{a}D_{q}f(a) \bigr\vert ^{r} \\ &\qquad {} +m \biggl( \int_{0}^{\mu}\bigl(1-(1-t)^{\alpha}\bigr) \,{}_{0}\mathrm{d}_{q}t \biggr) \biggl\vert {}_{a}D_{q}f\biggl(\frac{b}{m}\biggr) \biggr\vert ^{r}. \end{aligned}$$
(3.20)
Using (3.19) and (3.20) in (3.15), we get
$$\begin{aligned} & \biggl\vert \lambda\bigl[\mu f(b)+(1-\mu)f(a)\bigr]+(1-\lambda)f\bigl(\mu b+(1-\mu)a\bigr)-\frac{1}{b-a} \int_{a}^{b}f(x)\,{}_{a} \mathrm{d}_{q}x \biggr\vert \\ &\quad \leq(b-a) \biggl\{ \biggl( \int_{0}^{1} \bigl\vert qt-(1-\lambda\mu) \bigr\vert ^{s}\,{}_{0}\mathrm{d}_{q}t \biggr)^{\frac{1}{s}} \\ &\qquad {} \times\biggl[\biggl( \int_{0}^{1} (1-t)^{\alpha} \,{}_{0}\mathrm{d}_{q}t\biggr) \bigl\vert {}_{a}D_{q}f(a) \bigr\vert ^{r} \\ &\qquad {} +m\biggl( \int_{0}^{1} \bigl(1-(1-t)^{\alpha}\bigr) \,{}_{0}\mathrm{d}_{q}t\biggr) \biggl\vert {}_{a}D_{q}f\biggl(\frac{b}{m}\biggr) \biggr\vert ^{r}\biggr]^{\frac{1}{r}} \\ &\qquad {} +(1-\lambda)\mu^{\frac{1}{s}} \biggl[\biggl( \int_{0}^{\mu}(1-t)^{\alpha} \,{}_{0}\mathrm{d}_{q}t\biggr) \bigl\vert {}_{a}D_{q}f(a) \bigr\vert ^{r} \\ &\qquad {} +m\biggl( \int_{0}^{\mu}\bigl(1-(1-t)^{\alpha}\bigr) \,{}_{0}\mathrm{d}_{q}t \biggr) \biggl\vert {}_{a}D_{q}f\biggl(\frac{b}{m}\biggr) \biggr\vert ^{r}\biggr]^{\frac{1}{r}} \biggr\} . \end{aligned}$$
(3.21)
From (3.18) and (3.21), utilizing (3.4), (3.5), (3.6), (3.7), Lemma 2.2 and Lemma 2.6, we can deduce the desired result. The proof is completed. □
Remark 3.2
For \(\mu=\frac{1}{1+q}\), if we put \(\lambda=0\), \(\lambda=\frac{1}{3}\), \(\lambda=\frac{1}{2}\) and \(\lambda=1\) in Theorem 3.3 and Theorem 3.4, then we can get the midpoint-like integral inequality, the Simpson-like integral inequality, the averaged midpoint-trapezoid-like integral inequality and the trapezoid-like integral inequality, respectively.
Next we establish the q-integral inequalities involving the product of two \((\alpha,m)\)-convex functions.
Theorem 3.5
For \(0\leq a< b\) and some fixed \(m\in(0,1]\), let \(f,g: [a,\frac {b}{m} ]\rightarrow\mathbb{R}\) be continuous and nonnegative functions. Then the inequality
$$ \frac{1}{b-a} \int_{a}^{b} f(x)g(x)\,{}_{a} \mathrm{d}_{q}x\leq\min \bigl\{ \mathcal {L}_{1}( \alpha_{1},\alpha_{2},m),\mathcal{L}_{2}( \alpha_{1},\alpha_{2},m) \bigr\} $$
holds if f and g are \((\alpha_{1},m)\)-convex and \((\alpha _{2},m)\)-convex on \([a,\frac{b}{m} ]\) with \(\alpha_{1},\alpha_{2}\in (0,1]^{2}\), respectively, where
$$\begin{aligned} &\mathcal{L}_{1}(\alpha_{1},\alpha_{2},m) \\ &\quad = \biggl[\frac{1-q}{1-q^{\alpha_{1}+\alpha_{2}+1}}-\frac{1-q}{1-q^{\alpha _{1}+1}}-\frac{1-q}{1-q^{\alpha_{2}+1}}+1 \biggr]m^{2}f \biggl(\frac{a}{m} \biggr)g \biggl( \frac{a}{m} \biggr) \\ &\qquad {} +\frac{1-q}{1-q^{\alpha_{1}+\alpha_{2}+1}}f(b)g(b)+ \biggl[\frac {1-q}{1-q^{\alpha_{2}+1}}- \frac{1-q}{1-q^{\alpha_{1}+\alpha_{2}+1}} \biggr]mf \biggl(\frac{a}{m} \biggr)g(b) \\ &\qquad {} + \biggl[\frac{1-q}{1-q^{\alpha_{1}+1}}-\frac{1-q}{1-q^{\alpha_{1}+\alpha _{2}+1}} \biggr]mf(b)g \biggl( \frac{a}{m} \biggr), \\ &\mathcal{L}_{2}(\alpha_{1},\alpha_{2},m) \\ &\quad = \bigl[\Theta(\alpha_{1},\alpha_{2})-\Theta( \alpha_{1})-\Theta(\alpha _{2})+1 \bigr]m^{2}f \biggl(\frac{b}{m} \biggr)g \biggl(\frac{b}{m} \biggr) \\ &\qquad {} +\Theta(\alpha_{1},\alpha_{2})f(a)g(a)+ \bigl[ \Theta(\alpha_{1})-\Theta(\alpha _{1},\alpha_{2}) \bigr]mf(a)g \biggl(\frac{b}{m} \biggr) \\ &\qquad {} + \bigl[\Theta(\alpha_{2})-\Theta(\alpha_{1}, \alpha_{2}) \bigr]mf \biggl(\frac {b}{m} \biggr)g(a), \\ &\Theta(\alpha_{1},\alpha_{2})= \int_{0}^{1} (1-t)^{\alpha_{1}+\alpha_{2}} \,{}_{0}\mathrm{d}_{q}t=(1-q)\sum _{n=0}^{\infty}q^{n} \bigl(1-q^{n} \bigr)^{\alpha _{1}+\alpha_{2}}, \end{aligned}$$
and
$$ \Theta(\alpha_{i})= \int_{0}^{1} (1-t)^{\alpha_{i}} \,{}_{0}\mathrm{d}_{q}t=(1-q)\sum _{n=0}^{\infty}q^{n} \bigl(1-q^{n} \bigr)^{\alpha_{i}},\quad i=1,2. $$
Proof
Using the \((\alpha_{1},m)\)-convexity of f and the \((\alpha _{2},m)\)-convexity of g, respectively, for all \(t\in[0,1]\), we have
$$ f \bigl(tb+(1-t)a \bigr)\leq t^{\alpha_{1}}f(b)+m \bigl(1-t^{\alpha_{1}}\bigr)f \biggl(\frac {a}{m} \biggr) $$
(3.22)
and
$$ g \bigl(tb+(1-t)a \bigr)\leq t^{\alpha_{2}}g(b)+m \bigl(1-t^{\alpha_{2}}\bigr)g \biggl(\frac {a}{m} \biggr). $$
(3.23)
Multiplying (3.22) with (3.23), we get
$$\begin{aligned} &f \bigl(tb+(1-t)a \bigr)g \bigl(tb+(1-t)a \bigr) \\ &\quad \leq t^{\alpha_{1}+\alpha_{2}}f(b)g(b)+\bigl(1-t^{\alpha_{1}}\bigr) \bigl(1-t^{\alpha _{2}}\bigr)m^{2}f \biggl(\frac{a}{m} \biggr)g \biggl(\frac{a}{m} \biggr) \\ &\qquad {} +t^{\alpha_{2}}\bigl(1-t^{\alpha_{1}}\bigr)mf \biggl( \frac{a}{m} \biggr)g(b)+t^{\alpha _{1}}\bigl(1-t^{\alpha_{2}} \bigr)mf(b)g \biggl(\frac{a}{m} \biggr). \end{aligned}$$
(3.24)
Taking the q-integral for (3.24) with respect to t on \((0,1)\) and using Lemma 2.2, we obtain
$$\begin{aligned} & \int_{0}^{1} f \bigl(tb+(1-t)a \bigr)g \bigl(tb+(1-t)a \bigr)\,{}_{0}\mathrm{d}_{q}t \\ &\quad \leq \biggl[\frac{1-q}{1-q^{\alpha_{1}+\alpha_{2}+1}}-\frac{1-q}{1-q^{\alpha _{1}+1}}-\frac{1-q}{1-q^{\alpha_{2}+1}}+1 \biggr]m^{2}f \biggl(\frac{a}{m} \biggr)g \biggl( \frac{a}{m} \biggr) \\ &\qquad {} +\frac{1-q}{1-q^{\alpha_{1}+\alpha_{2}+1}}f(b)g(b)+ \biggl[\frac {1-q}{1-q^{\alpha_{2}+1}}- \frac{1-q}{1-q^{\alpha_{1}+\alpha_{2}+1}} \biggr]mf \biggl(\frac{a}{m} \biggr)g(b) \\ &\qquad {} + \biggl[\frac{1-q}{1-q^{\alpha_{1}+1}}-\frac{1-q}{1-q^{\alpha_{1}+\alpha _{2}+1}} \biggr]mf(b)g \biggl( \frac{a}{m} \biggr). \end{aligned}$$
(3.25)
Similarly, we get
$$\begin{aligned} & \int_{0}^{1} f \bigl(tb+(1-t)a \bigr)g \bigl(tb+(1-t)a \bigr)\,{}_{0}\mathrm{d}_{q}t \\ &\quad \leq \biggl( \int_{0}^{1}(1-t)^{\alpha_{1}+\alpha_{2}}\,{}_{0} \mathrm{d}_{q}t- \int _{0}^{1}(1-t)^{\alpha_{1}}\,{}_{0} \mathrm{d}_{q}t \\ &\qquad {} - \int_{0}^{1}(1-t)^{\alpha_{2}}\,{}_{0} \mathrm{d}_{q}t+1 \biggr)m^{2}f \biggl(\frac {b}{m} \biggr)g \biggl(\frac{b}{m} \biggr) \\ &\qquad {} + \biggl( \int_{0}^{1}(1-t)^{\alpha_{1}+\alpha_{2}}\,{}_{0} \mathrm{d}_{q}t \biggr)f(a)g(a) \\ &\qquad {} + \biggl( \int_{0}^{1}(1-t)^{\alpha_{1}}\,{}_{0} \mathrm{d}_{q}t- \int_{0}^{1}(1-t)^{\alpha _{1}+\alpha_{2}}\,{}_{0} \mathrm{d}_{q}t \biggr)mf(a)g \biggl(\frac{b}{m} \biggr) \\ &\qquad {} + \biggl( \int_{0}^{1}(1-t)^{\alpha_{2}}\,{}_{0} \mathrm{d}_{q}t- \int _{0}^{1}(1-t)^{\alpha_{1}+\alpha_{2}}\,{}_{0} \mathrm{d}_{q}t \biggr)mf \biggl(\frac {b}{m} \biggr)g(a). \end{aligned}$$
(3.26)
A simple calculation shows that
$$ \int_{0}^{1} f \bigl(tb+(1-t)a \bigr)g \bigl(tb+(1-t)a \bigr)\,{}_{0}\mathrm{d}_{q}t = \frac{1}{b-a} \int_{a}^{b} f(x)g(x)\,{}_{a} \mathrm{d}_{q}x. $$
(3.27)
From (3.25), (3.26) and (3.27), we obtain the desired result. This ends the proof. □
Corollary 3.2
In Theorem 3.5, choosing \(\alpha_{1}=\alpha_{2}=\alpha\), we obtain
$$ \frac{1}{b-a} \int_{a}^{b} f(x)g(x)\,{}_{a} \mathrm{d}_{q}x\leq\min \bigl\{ \mathcal {T}_{1}(\alpha,m), \mathcal{T}_{2}(\alpha,m) \bigr\} , $$
where
$$\begin{aligned} \mathcal{T}_{1}(\alpha,m) &= \frac{1-q}{1-q^{2\alpha+1}}f(b)g(b)+ \biggl[ \frac{1-q}{1-q^{2\alpha +1}}-\frac{2(1-q)}{1-q^{\alpha+1}}+1 \biggr]m^{2}f \biggl( \frac{a}{m} \biggr)g \biggl(\frac{a}{m} \biggr) \\ &\quad {} +\frac{q^{\alpha+1}(1-q)(1-q^{\alpha})}{(1-q^{\alpha+1})(1-q^{2\alpha +1})}m \biggl[f \biggl(\frac{a}{m} \biggr)g(b)+f(b)g \biggl(\frac{a}{m} \biggr) \biggr] \end{aligned}$$
and
$$\begin{aligned} \mathcal{T}_{2}(\alpha,m) &= \Biggl[(1-q)\sum _{n=0}^{\infty}q^{n} \bigl(1-q^{n} \bigr)^{2\alpha}-2(1-q)\sum_{n=0}^{\infty}q^{n} \bigl(1-q^{n} \bigr)^{\alpha}+1 \Biggr]m^{2}f \biggl( \frac {b}{m} \biggr)g \biggl(\frac{b}{m} \biggr) \\ &\quad {} +(1-q)\sum_{n=0}^{\infty}q^{n} \bigl(1-q^{n} \bigr)^{2\alpha}f(a)g(a) \\ &\quad {} + \Biggl[(1-q)\sum_{n=0}^{\infty}q^{n} \bigl(1-q^{n} \bigr)^{\alpha}-(1-q)\sum _{n=0}^{\infty}q^{n} \bigl(1-q^{n} \bigr)^{2\alpha} \Biggr] \\ &\quad {} \times \biggl[mf(a)g \biggl(\frac{b}{m} \biggr)+mf \biggl( \frac{b}{m} \biggr)g(a) \biggr]. \end{aligned}$$
Further, taking \(\alpha=1=m\), we get
$$\begin{aligned} &\frac{1}{b-a} \int_{a}^{b} f(x)g(x)\,{}_{a} \mathrm{d}_{q}x \\ &\quad \leq \frac{1}{1+q+q^{2}}f(b)g(b)+\frac{q(1+q^{2})}{(1+q)(1+q+q^{2})}f(a)g(a) \\ &\qquad {} +\frac{q^{2}}{(1+q)(1+q+q^{2})} \bigl[f(a)g(b)+f(b)g(a) \bigr], \end{aligned}$$
which is established by Sudsutad et al. in [26, Theorem 4.3].

4 Conclusions

In the present research, based on a new quantum integral identity with multiple parameters, we have developed some quantum error estimations of different type inequalities through \((\alpha,m)\)-convexity, such as the midpoint-like inequalities, the Simpson-like inequalities, the averaged midpoint-trapezoid-like inequalities and the trapezoid-like inequalities. The inequalities derived in this work are very helpful in error estimations involved in various approximation processes. We expect that the ideas of this article will facilitate further study concerning quantum integral inequalities.

Competing interests

The authors declare that they have no competing interests.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literature
1.
go back to reference Alomari, M., Darus, M., Dragomir, S.S.: New inequalities of Simpson’s type for s-convex functions with applications. Research Report Collection 12(4) (2009) Alomari, M., Darus, M., Dragomir, S.S.: New inequalities of Simpson’s type for s-convex functions with applications. Research Report Collection 12(4) (2009)
2.
go back to reference Alp, N., Sarikaya, M.Z., Kunt, M., İşcan, İ.: q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions. J. King Saud Univ., Sci. 30, 193–203 (2018) CrossRef Alp, N., Sarikaya, M.Z., Kunt, M., İşcan, İ.: q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions. J. King Saud Univ., Sci. 30, 193–203 (2018) CrossRef
3.
go back to reference Awan, M.U., Cristescu, G., Noor, M.A., Riahi, L.: Upper and lower bounds for Riemann type quantum integrals of preinvex and preinvex dominated functions. UPB Sci. Bull., Ser. A 79(3), 33–44 (2017) MathSciNet Awan, M.U., Cristescu, G., Noor, M.A., Riahi, L.: Upper and lower bounds for Riemann type quantum integrals of preinvex and preinvex dominated functions. UPB Sci. Bull., Ser. A 79(3), 33–44 (2017) MathSciNet
4.
go back to reference Chen, F.X., Yang, W.G.: Some new Chebyshev type quantum integral inequalities on finite intervals. J. Comput. Anal. Appl. 21(3), 417–426 (2016) MathSciNetMATH Chen, F.X., Yang, W.G.: Some new Chebyshev type quantum integral inequalities on finite intervals. J. Comput. Anal. Appl. 21(3), 417–426 (2016) MathSciNetMATH
5.
go back to reference Du, T.S., Li, Y.J., Yang, Z.Q.: A generalization of Simpson’s inequality via differentiable mapping using extended \((s,m)\)-convex functions. Appl. Math. Comput. 293, 358–369 (2017) MathSciNet Du, T.S., Li, Y.J., Yang, Z.Q.: A generalization of Simpson’s inequality via differentiable mapping using extended \((s,m)\)-convex functions. Appl. Math. Comput. 293, 358–369 (2017) MathSciNet
6.
go back to reference Du, T.S., Liao, J.G., Li, Y.J.: Properties and integral inequalities of Hadamard–Simpson type for the generalized \((s,m)\)-preinvex functions. J. Nonlinear Sci. Appl. 9(5), 3112–3126 (2016) MathSciNetCrossRef Du, T.S., Liao, J.G., Li, Y.J.: Properties and integral inequalities of Hadamard–Simpson type for the generalized \((s,m)\)-preinvex functions. J. Nonlinear Sci. Appl. 9(5), 3112–3126 (2016) MathSciNetCrossRef
7.
go back to reference Hsu, K.C., Hwang, S.R., Tseng, K.L.: Some extended Simpson-type inequalities and applications. Bull. Iran. Math. Soc. 43(2), 409–425 (2017) MathSciNet Hsu, K.C., Hwang, S.R., Tseng, K.L.: Some extended Simpson-type inequalities and applications. Bull. Iran. Math. Soc. 43(2), 409–425 (2017) MathSciNet
8.
go back to reference Iqbal, M., Qaisar, S., Hussain, S.: On Simpson’s type inequalities utilizing fractional integrals. J. Comput. Anal. Appl. 23(6), 1137–1145 (2017) MathSciNet Iqbal, M., Qaisar, S., Hussain, S.: On Simpson’s type inequalities utilizing fractional integrals. J. Comput. Anal. Appl. 23(6), 1137–1145 (2017) MathSciNet
10.
go back to reference İşcan, İ.: Hermite–Hadamard type inequalities for harmonically \((\alpha, m)\)-convex functions. Hacet. J. Math. Stat. 45(2), 381–390 (2016) MathSciNetMATH İşcan, İ.: Hermite–Hadamard type inequalities for harmonically \((\alpha, m)\)-convex functions. Hacet. J. Math. Stat. 45(2), 381–390 (2016) MathSciNetMATH
12.
go back to reference Khan, M.A., Chu, Y.M., Kashuri, A., Liko, R., Ali, G.: Conformable fractional integrals versions of Hermite–Hadamard inequalities and their generalizations. J. Funct. Spaces 2018, Article ID 6928130 (2018) MathSciNetMATH Khan, M.A., Chu, Y.M., Kashuri, A., Liko, R., Ali, G.: Conformable fractional integrals versions of Hermite–Hadamard inequalities and their generalizations. J. Funct. Spaces 2018, Article ID 6928130 (2018) MathSciNetMATH
13.
go back to reference Khan, M.A., Chu, Y.M., Khan, T.U., Khan, J.: Some new inequalities of Hermite–Hadamard type for s-convex functions with applications. Open Math. 15, 1414–1430 (2017) MathSciNetCrossRef Khan, M.A., Chu, Y.M., Khan, T.U., Khan, J.: Some new inequalities of Hermite–Hadamard type for s-convex functions with applications. Open Math. 15, 1414–1430 (2017) MathSciNetCrossRef
14.
go back to reference Khan, M.A., Khurshid, Y., Du, T.S., Chu, Y.M.: Generalization of Hermite–Hadamard type inequalities via conformable fractional integrals. J. Funct. Spaces 2018, Article ID 5357463 (2018) MathSciNetMATH Khan, M.A., Khurshid, Y., Du, T.S., Chu, Y.M.: Generalization of Hermite–Hadamard type inequalities via conformable fractional integrals. J. Funct. Spaces 2018, Article ID 5357463 (2018) MathSciNetMATH
16.
go back to reference Latif, M.A.: On some new inequalities of Hermite–Hadamard type for functions whose derivatives are s-convex in the second sense in the absolute value. Ukr. Math. J. 67(10), 1552–1571 (2016) MathSciNetCrossRef Latif, M.A.: On some new inequalities of Hermite–Hadamard type for functions whose derivatives are s-convex in the second sense in the absolute value. Ukr. Math. J. 67(10), 1552–1571 (2016) MathSciNetCrossRef
17.
go back to reference Latif, M.A., Dragomir, S.S., Momoniat, E.: On Hermite–Hadamard type integral inequalities for n-times differentiable m- and \((\alpha,m)\)-logarithmically convex functions. Filomat 30(11), 3101–3114 (2016) MathSciNetCrossRef Latif, M.A., Dragomir, S.S., Momoniat, E.: On Hermite–Hadamard type integral inequalities for n-times differentiable m- and \((\alpha,m)\)-logarithmically convex functions. Filomat 30(11), 3101–3114 (2016) MathSciNetCrossRef
18.
go back to reference Liu, W.J., Zhuang, H.F.: Some quantum estimates of Hermite–Hadamard inequalities for convex functions. J. Appl. Anal. Comput. 7(2), 501–522 (2017) MathSciNet Liu, W.J., Zhuang, H.F.: Some quantum estimates of Hermite–Hadamard inequalities for convex functions. J. Appl. Anal. Comput. 7(2), 501–522 (2017) MathSciNet
19.
go back to reference Miheşan, V.G.: A generalization of the convexity. In: Seminar on Functional Equations, Approx. and Convex., Cluj-Napoca, Romania (1993) Miheşan, V.G.: A generalization of the convexity. In: Seminar on Functional Equations, Approx. and Convex., Cluj-Napoca, Romania (1993)
20.
go back to reference Noor, M.A., Cristescu, G., Awan, M.U.: Bounds having Riemann type quantum integrals via strongly convex functions. Studia Sci. Math. Hung. 54(2), 221–240 (2017) MathSciNetMATH Noor, M.A., Cristescu, G., Awan, M.U.: Bounds having Riemann type quantum integrals via strongly convex functions. Studia Sci. Math. Hung. 54(2), 221–240 (2017) MathSciNetMATH
21.
go back to reference Noor, M.A., Noor, K.I., Awan, M.U.: Some quantum estimates for Hermite–Hadamard inequalities. Appl. Math. Comput. 251, 675–679 (2015) MathSciNetMATH Noor, M.A., Noor, K.I., Awan, M.U.: Some quantum estimates for Hermite–Hadamard inequalities. Appl. Math. Comput. 251, 675–679 (2015) MathSciNetMATH
22.
go back to reference Qi, F., Xi, B.Y.: Some integral inequalities of Simpson type for GA-ε-convex functions. Georgian Math. J. 20, 775–788 (2013) MathSciNetCrossRef Qi, F., Xi, B.Y.: Some integral inequalities of Simpson type for GA-ε-convex functions. Georgian Math. J. 20, 775–788 (2013) MathSciNetCrossRef
23.
go back to reference Riahi, L., Awan, M.U., Noor, M.A.: Some complementary q-bounds via different classes of convex functions. UPB Sci. Bull., Ser. A 79(2), 171–182 (2017) MathSciNet Riahi, L., Awan, M.U., Noor, M.A.: Some complementary q-bounds via different classes of convex functions. UPB Sci. Bull., Ser. A 79(2), 171–182 (2017) MathSciNet
24.
go back to reference Set, E., Akdemir, A.O., Özdemir, M.E.: Simpson type integral inequalities for convex functions via Riemann–Liouville integrals. Filomat 31(14), 4415–4420 (2017) MathSciNetCrossRef Set, E., Akdemir, A.O., Özdemir, M.E.: Simpson type integral inequalities for convex functions via Riemann–Liouville integrals. Filomat 31(14), 4415–4420 (2017) MathSciNetCrossRef
25.
go back to reference Set, E., Karatas, S.S., Khan, M.A.: Hermite–Hadamard type inequalities obtained via fractional integral for differentiable m-convex and \((\alpha,m)\)-convex functions. Int. J. Anal. 2016, Article ID 4765691 (2016) MathSciNetMATH Set, E., Karatas, S.S., Khan, M.A.: Hermite–Hadamard type inequalities obtained via fractional integral for differentiable m-convex and \((\alpha,m)\)-convex functions. Int. J. Anal. 2016, Article ID 4765691 (2016) MathSciNetMATH
26.
go back to reference Sudsutad, W., Ntouyas, S.K., Tariboon, J.: Quantum integral inequalities for convex functions. J. Math. Inequal. 9(3), 781–793 (2015) MathSciNetCrossRef Sudsutad, W., Ntouyas, S.K., Tariboon, J.: Quantum integral inequalities for convex functions. J. Math. Inequal. 9(3), 781–793 (2015) MathSciNetCrossRef
27.
go back to reference Sudsutad, W., Ntouyas, S.K., Tariboon, J.: Integral inequalities via fractional quantum calculus. J. Inequal. Appl. 2016, Article ID 81 (2016) MathSciNetCrossRef Sudsutad, W., Ntouyas, S.K., Tariboon, J.: Integral inequalities via fractional quantum calculus. J. Inequal. Appl. 2016, Article ID 81 (2016) MathSciNetCrossRef
28.
go back to reference Tariboon, J., Ntouyas, S.K.: Quantum integral inequalities on finite intervals. J. Inequal. Appl. 2014, Article ID 121 (2014) MathSciNetCrossRef Tariboon, J., Ntouyas, S.K.: Quantum integral inequalities on finite intervals. J. Inequal. Appl. 2014, Article ID 121 (2014) MathSciNetCrossRef
29.
go back to reference Tariboon, J., Ntouyas, S.K., Agarwal, P.: New concepts of fractional quantum calculus and applications to impulsive fractional q-difference equations. Adv. Differ. Equ. 2015, Article ID 18 (2015) MathSciNetCrossRef Tariboon, J., Ntouyas, S.K., Agarwal, P.: New concepts of fractional quantum calculus and applications to impulsive fractional q-difference equations. Adv. Differ. Equ. 2015, Article ID 18 (2015) MathSciNetCrossRef
30.
go back to reference Xi, B.Y., Qi, F.: Some Hermite–Hadamard type inequalities for differentiable convex functions and applications. Hacet. J. Math. Stat. 42(3), 243–257 (2013) MathSciNetMATH Xi, B.Y., Qi, F.: Some Hermite–Hadamard type inequalities for differentiable convex functions and applications. Hacet. J. Math. Stat. 42(3), 243–257 (2013) MathSciNetMATH
31.
go back to reference Yang, W.G.: Some new Fejér type inequalities via quantum calculus on finite intervals. ScienceAsia 43(2), 123–134 (2017) CrossRef Yang, W.G.: Some new Fejér type inequalities via quantum calculus on finite intervals. ScienceAsia 43(2), 123–134 (2017) CrossRef
Metadata
Title
Different types of quantum integral inequalities via -convexity
Authors
Yao Zhang
Ting-Song Du
Hao Wang
Yan-Jun Shen
Publication date
01-12-2018
Publisher
Springer International Publishing
Published in
Journal of Inequalities and Applications / Issue 1/2018
Electronic ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-018-1860-2

Other articles of this Issue 1/2018

Journal of Inequalities and Applications 1/2018 Go to the issue

Premium Partner