Skip to main content
Top
Published in: Journal of Inequalities and Applications 1/2018

Open Access 01-12-2018 | Research

Differential equation and inequalities of the generalized k-Bessel functions

Authors: Saiful R. Mondal, Mohamed S. Akel

Published in: Journal of Inequalities and Applications | Issue 1/2018

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we introduce and study a generalization of the k-Bessel function of order ν given by
$$ \mathtt{W}^{\mathtt{k}}_{\nu , c}(x):= \sum_{r=0}^{\infty } \frac{(-c)^{r}}{\Gamma_{\mathtt{k}} ( r \mathtt{k} +\nu +\mathtt{k} ) r!} \biggl( \frac{x}{2} \biggr) ^{2r+\frac{\nu }{\mathtt{k}}}. $$
We also indicate some representation formulae for the function introduced. Further, we show that the function \(\mathtt{W}^{ \mathtt{k}}_{\nu , c}\) is a solution of a second-order differential equation. We investigate monotonicity and log-convexity properties of the generalized k-Bessel function \(\mathtt{W}^{\mathtt{k}} _{\nu , c}\), particularly, in the case \(c=-1\). We establish several inequalities, including a Turán-type inequality. We propose an open problem regarding the pattern of the zeroes of \(\mathtt{W}^{ \mathtt{k}}_{\nu , c}\).
Notes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introductions

Motivated with the repeated appearance of the expression
$$ x(x + \mathtt{k}) (x + 2\mathtt{k})\cdots \bigl(x + (n -1)\mathtt{k} \bigr) $$
in the combinatorics of creation and annihilation operators [13, 14] and the perturbative computation of Feynman integrals (see [12]), a generalization of the well-known Pochhammer symbols is given in [15] as
$$ (x)_{n,\mathtt{k}}:=x(x + \mathtt{k}) (x + 2\mathtt{k})\cdots \bigl(x + (n -1) \mathtt{k} \bigr), $$
for all \(\mathtt{k}>0\), calling it the Pochhammer k-symbol. Closely associated functions that have relation with the Pochhammer symbols are the gamma and beta functions. Hence it is useful to recall some facts about the k-gamma and k-beta functions. The k-gamma function, denoted as \(\Gamma_{\mathtt{k}}\), is studied in [15] and defined by
$$\begin{aligned} \Gamma_{\mathtt{k}}(x):= \int_{0}^{\infty }t^{x-1}e^{-\frac{t^{ \mathtt{k}}}{\mathtt{k}}}\,dt \end{aligned}$$
(1.1)
for \(\operatorname {Re}(x)>0\). Several properties of the k-gamma functions and applications in generalizing other related functions like k-beta and k-digamma functions can be found in [15, 27, 28] and references therein.
The k-digamma functions defined by \(\Psi_{\mathtt{k}}:= \Gamma_{\mathtt{k}}'/\Gamma_{\mathtt{k}} \) are studied in [28]. These functions have the series representation
$$\begin{aligned} \Psi_{\mathtt{k}}(t):=\frac{\log (\mathtt{k})-\gamma_{1}}{\mathtt{k}}- \frac{1}{t} +\sum _{n=1}^{\infty }\frac{t}{n\mathtt{k}(n\mathtt{k}+t)}, \end{aligned}$$
(1.2)
where \(\gamma_{1}\) is the Euler–Mascheroni constant.
A calculation yields
$$\begin{aligned} \Psi_{\mathtt{k}}'(t)=\sum _{n=0}^{\infty } \frac{1}{(n\mathtt{k}+t)^{2}}, \quad \mathtt{k}>0 \mbox{ and } t>0. \end{aligned}$$
(1.3)
Clearly, \(\Psi_{\mathtt{k}}\) is increasing on \((0, \infty )\).
The Bessel function of order p given by
$$ \mathtt{J}_{p}(x):= \sum_{k=0}^{\infty } \frac{(-1)^{k}}{\Gamma { ( k +p+1 ) } \Gamma { ( k+1 ) }} \biggl( \frac{x}{2} \biggr) ^{2k+p} $$
(1.4)
is a particular solution of the Bessel differential equation
$$\begin{aligned} x^{2} y''(x)+ x y'(x)+ \bigl(x^{2}-p^{2} \bigr)y(x)= 0. \end{aligned}$$
(1.5)
Here Γ denotes the gamma function. A solution of the modified Bessel equation
$$\begin{aligned} x^{2} y''(x)+ x y'(x)- \bigl(x^{2}+{\nu }^{2} \bigr)y(x)= 0, \end{aligned}$$
(1.6)
is the modified Bessel function
$$ \mathtt{I}_{\nu }(x):= \sum_{k=0}^{\infty } \frac{1}{\Gamma { ( k +\nu +1 ) } \Gamma { ( k+1 ) }} \biggl( \frac{x}{2} \biggr) ^{2k+\nu }. $$
(1.7)
The Bessel function has several generalizations (see, e.g., [9, 10]) and is notably investigated in [1, 17]. In [1], a generalized Bessel function is defined in the complex plane, and sufficient conditions for it to be univalent, starlike, close-to-convex, or convex are obtained. This generalization is given by the power series
$$\begin{aligned} \mathcal{W}_{p, b, c}(z)= \sum_{k=0}^{\infty } \frac{(-c)^{k} ( \frac{z}{2} ) ^{2k+p+1}}{\Gamma ( k+1 ) \Gamma ( k+p+ \frac{b+2}{2} ) },\quad p, b, c \in \mathbb{C}. \end{aligned}$$
(1.8)
In this paper, we consider the function defined by the series
$$\begin{aligned} \mathtt{W}_{\nu , c}^{\mathtt{k}} (x) :=\sum _{r=0}^{\infty }\frac{(-c)^{r} }{ \Gamma_{\mathtt{k}}(r \mathtt{k}+ \nu + \mathtt{k}) r!} \biggl( \frac{x}{2} \biggr) ^{2r+\frac{ \nu }{\mathtt{k}}}, \end{aligned}$$
(1.9)
where \(\mathtt{k}>0\), \(\nu >-1\), and \(c \in \mathbb{R}\). As \(\mathtt{k}\to 1\), the k-Bessel function \(\mathtt{W}_{ \nu , 1}^{1}\) is reduced to the classical Bessel function \(J_{\nu }\), whereas \(\mathtt{W}_{\nu , -1}^{1}\) coincides with the modified Bessel function \(I_{\nu }\). Thus, we call the function \(\mathtt{W}_{\nu , c} ^{\mathtt{k}}\) the generalized k-Bessel function. Basic properties of the k-Bessel and related functions can be found in recent works [8, 1921].
Turán [30] proved that the Legendre polynomials \(P_{n}(x)\) satisfy the determinantal inequality
$$\begin{aligned} \biggl\vert \textstyle\begin{array}{@{}c@{\quad }c@{}} P_{n}(x) & P_{n+1}(x) \\ P_{n+1}(x) & P_{n+2}(x) \end{array}\displaystyle \biggr\vert \leq 0, \quad -1 \le x \le 1, \end{aligned}$$
(1.10)
where \(n = 0, 1, 2, \ldots \) , and the equality occurs only for \(x = \pm 1\). The inequalities similar to (1.10) can be found in the literature [2, 3, 5, 11, 16, 25] for several other functions, for example, ultraspherical polynomials, Laguerre and Hermite polynomials, Bessel functions of the first kind, modified Bessel functions, and the polygamma function. Karlin and Szegö [24] named determinants in (1.10) as Turánians. More details about Turánians can be found in [5, 11, 18, 22, 23, 29].
The aim of this paper is to investigate the influence of the \(\Gamma_{\mathtt{k}}\) functions on the properties of the k-Bessel function defined in (1.9). It is shown that the properties of the classical Bessel functions can be extended to the k-Bessel functions. Moreover, we investigate the effects of \(\Gamma_{\mathtt{k}}\) instead of Γ on the monotonicity and log-convexity properties and related inequalities of the k-Bessel functions. The outcomes of our investigation are presented as follows.
In Section 2, we derive representation formulae and some recurrence relations for \(\mathtt{W}_{\nu , c}^{\mathtt{k}}\). More importantly, the function \(\mathtt{W}_{\nu , c}^{\mathtt{k}}\) is shown to be a solution of a certain differential equation of second order, which contains (1.5) and (1.6) for the particular case \(\mathtt{k}=1\) and for particular values of c. At the end of Section 2, we give two types of integral representations for \(\mathtt{W}_{\nu , c}^{\mathtt{k}}\).
Section 3 is devoted to the investigation of monotonicity and log-convexity properties of the functions \(\mathtt{W}_{\nu , c} ^{\mathtt{k}}\) and to relation between two k-Bessel functions of different order. As a consequence, we deduce Turán-type inequalities.
In Section 4, we give concluding remarks and list two tables for the zeroes of \(\mathtt{W}^{\mathtt{k}}_{\nu , c}\), leading to an open problem for future studies.

2 Representations for the k-Bessel function

2.1 The k-Bessel differential equation

In this section, we find differential equations corresponding to the functions \(\mathtt{W}_{\nu , c}^{\mathtt{k}}\).
Proposition 2.1
Let \(\mathtt{k}>0\) and \(\nu >-k\). Then the function \(\mathtt{W}_{ \nu , c}^{\mathtt{k}}\) is a solution of the homogeneous differential equation
$$\begin{aligned} x^{2} \frac{d^{2}y}{dx^{2}}+ x \frac{dy}{dx}+ \frac{1}{\mathtt{k}^{2}} \bigl( c x^{2} \mathtt{k}- {\nu^{2}} {} \bigr) y=0. \end{aligned}$$
(2.1)
Proof
Differentiating both sides of (1.9) with respect to x, it follows that
$$\begin{aligned} \frac{d}{dx}\mathtt{W}_{\nu , c}^{\mathtt{k}} (x) =\sum _{r=0}^{\infty }\frac{(-c)^{r} ( 2r+\frac{\nu }{\mathtt{k}} ) }{ \Gamma_{\mathtt{k}}(r \mathtt{k}+ \nu + \mathtt{k}) r!} \biggl( \frac{x ^{2r+\frac{\nu }{\mathtt{k}}-1}}{2^{2r+\frac{\nu }{\mathtt{k}}}} \biggr) . \end{aligned}$$
This implies
$$\begin{aligned} x\frac{d}{dx}\mathtt{W}_{\nu , c}^{\mathtt{k}} (x) = \sum_{r=0}^{ \infty }\frac{(-c)^{r} ( 2r+\frac{\nu }{\mathtt{k}} ) }{ \Gamma_{\mathtt{k}}(r \mathtt{k}+ \nu + \mathtt{k}) r!} \biggl( \frac{x}{2} \biggr) ^{2r+\frac{\nu }{\mathtt{k}}}. \end{aligned}$$
(2.2)
Now differentiating (2.2) with respect to x and then using the property \(\Gamma_{\mathtt{k}}(z+\mathtt{k})= z \Gamma_{\mathtt{k}}(z)\) of the k-gamma function yield
$$\begin{aligned} &x^{2} \frac{d^{2}}{dx^{2}}\mathtt{W}_{\nu , c}^{\mathtt{k}} (x)+ x \frac{d}{dx}\mathtt{W}_{\nu , c}^{\mathtt{k}} (x) \\ &\quad =\sum_{r=0}^{\infty }\frac{(-c)^{r} ( 2r+\frac{\nu }{\mathtt{k}} ) ^{2} }{ \Gamma_{\mathtt{k}}(r \mathtt{k}+ \nu + \mathtt{k}) r!} \biggl( \frac{x}{2} \biggr) ^{2r+\frac{\nu }{\mathtt{k}}} \\ &\quad = \sum_{r=1}^{\infty }\frac{(-c)^{r} 4r ( r+\frac{\nu }{ \mathtt{k}} ) }{ \Gamma_{\mathtt{k}}(r \mathtt{k}+ \nu + \mathtt{k}) r!} \biggl( \frac{x}{2} \biggr) ^{2r+\frac{\nu }{\mathtt{k}}} \\ &\quad \quad {}+ \frac{\nu^{2}}{\mathtt{k}^{2}} \sum _{r=0}^{\infty }\frac{(-c)^{r} }{ \Gamma_{\mathtt{k}}(r \mathtt{k}+ \nu + \mathtt{k}) r!} \biggl( \frac{x}{2} \biggr) ^{2r+\frac{\nu }{\mathtt{k}}} \\ &\quad =\frac{4}{\mathtt{k}} \sum_{r=1}^{\infty } \frac{(-c)^{r} }{ \Gamma_{\mathtt{k}}(r \mathtt{k}+ \nu ) (r-1)!} \biggl( \frac{x}{2} \biggr) ^{2r+\frac{\nu }{\mathtt{k}}} + \frac{\nu^{2}}{\mathtt{k}^{2}} \mathtt{W}_{\nu , c}^{\mathtt{k}} (x) \\ &\quad =- \frac{c x^{2}}{\mathtt{k}}\mathtt{W}_{\nu , c}^{\mathtt{k}} (x) + \frac{\nu^{2}}{\mathtt{k}^{2}}\mathtt{W}_{\nu , c}^{\mathtt{k}} (x). \end{aligned}$$
A further simplification leads to the differential equation (2.1). □

2.2 Recurrence relations

From (2.2) we have
$$\begin{aligned} x \frac{d}{dx}\mathtt{W}_{\nu , c}^{\mathtt{k}} (x) &= \frac{1}{ \mathtt{k}}\sum_{r=0}^{\infty } \frac{(-c)^{r} ( 2r \mathtt{k} + {\nu } ) }{ \Gamma_{\mathtt{k}}(r \mathtt{k}+ \nu + \mathtt{k}) r!} \biggl( \frac{x}{2} \biggr) ^{2r+\frac{\nu }{\mathtt{k}}} \\ & =\frac{\nu }{\mathtt{k}}\sum_{r=0}^{\infty }\frac{(-c)^{r} }{ \Gamma_{\mathtt{k}}(r \mathtt{k}+ \nu + \mathtt{k}) r!} \biggl( \frac{x}{2} \biggr) ^{2r+\frac{\nu }{\mathtt{k}}} \\ &\quad {}+2 \sum _{r=1}^{\infty }\frac{(-c)^{r}}{ \Gamma_{\mathtt{k}}(r \mathtt{k}+ \nu + \mathtt{k}) (r-1)!} \biggl( \frac{x}{2} \biggr) ^{2r+\frac{\nu }{\mathtt{k}}} \\ & =\frac{\nu }{\mathtt{k}}\mathtt{W}_{\nu , c}^{\mathtt{k}}(x) +2 \sum _{r=0}^{\infty }\frac{(-c)^{r+1}}{ \Gamma_{\mathtt{k}}(r \mathtt{k}+ \nu + 2\mathtt{k}) r!} \biggl( \frac{x}{2} \biggr) ^{2r+2+\frac{ \nu }{\mathtt{k}}} \\ & =\frac{\nu }{\mathtt{k}}\mathtt{W}_{\nu , c}^{\mathtt{k}}(x)- xc \mathtt{W}_{\nu +\mathtt{k}, c}^{\mathtt{k}}(x). \end{aligned}$$
Thus we have the difference equation
$$\begin{aligned} x \frac{d}{dx}\mathtt{W}_{\nu , c}^{\mathtt{k}} (x)= \frac{\nu }{ \mathtt{k}}\mathtt{W}_{\nu , c}^{\mathtt{k}}(x)- xc \mathtt{W}_{ \nu +\mathtt{k}, c}^{\mathtt{k}}(x). \end{aligned}$$
(2.3)
Again, rewrite (2.2) as
$$\begin{aligned} x \frac{d}{dx}\mathtt{W}_{\nu , c}^{\mathtt{k}} (x) &= \frac{1}{ \mathtt{k}}\sum_{r=0}^{\infty } \frac{(-c)^{r} ( 2r \mathtt{k} +2 {\nu } ) - \nu }{ \Gamma_{\mathtt{k}}(r \mathtt{k}+ \nu + \mathtt{k}) r!} \biggl( \frac{x}{2} \biggr) ^{2r+\frac{\nu }{\mathtt{k}}} \\ &=- \frac{\nu }{\mathtt{k}}\sum_{r=0}^{\infty }\frac{(-c)^{r}}{\Gamma_{\mathtt{k}}(r \mathtt{k}+ \nu + \mathtt{k}) r!} \biggl( \frac{x}{2} \biggr) ^{2r+\frac{\nu }{\mathtt{k}}} +2\sum _{r=0}^{\infty }\frac{(-c)^{r} ( r \mathtt{k} +{\nu } ) }{ \Gamma_{\mathtt{k}}(r \mathtt{k}+ \nu + \mathtt{k}) r!} \biggl( \frac{x}{2} \biggr) ^{2r+\frac{\nu }{ \mathtt{k}}} \\ &=- \frac{\nu }{\mathtt{k}} \mathtt{W}_{\nu , c}^{\mathtt{k}} (x) + \frac{x}{ \mathtt{k}} \sum_{r=0}^{\infty } \frac{(-c)^{r}}{ \Gamma_{\mathtt{k}}(r \mathtt{k}+ \nu - \mathtt{k} + \mathtt{k}) r!} \biggl( \frac{x}{2} \biggr) ^{2r+\frac{\nu -\mathtt{k}}{\mathtt{k}}} \\ &=- \frac{\nu }{\mathtt{k}} \mathtt{W}_{\nu , c}^{\mathtt{k}} (x) + \frac{x}{ \mathtt{k}} \mathtt{W}_{\nu -\mathtt{k}, c}^{\mathtt{k}} (x). \end{aligned}$$
This gives us the second difference equation
$$\begin{aligned} x \frac{d}{dx}\mathtt{W}_{\nu , c}^{\mathtt{k}} (x) = \frac{x}{ \mathtt{k}} \mathtt{W}_{\nu -\mathtt{k}, c}^{\mathtt{k}} (x) - \frac{ \nu }{\mathtt{k}} \mathtt{W}_{\nu , c}^{\mathtt{k}} (x). \end{aligned}$$
(2.4)
Thus (2.3) and (2.4) lead to the following recurrence relations.
Proposition 2.2
Let \(\mathtt{k}>0\) and \(\nu > -\mathtt{k}\). Then
$$\begin{aligned}& 2 \nu \mathtt{W}_{\nu , c}^{\mathtt{k}}(x) =x \mathtt{W}_{\nu - \mathtt{k}, c}^{\mathtt{k}} (x) + xc \mathtt{k} \mathtt{W}_{\nu + \mathtt{k}, c}^{\mathtt{k}}(x), \end{aligned}$$
(2.5)
$$\begin{aligned}& \mathtt{W}^{\mathtt{k}}_{\nu -\mathtt{k}, c}(x) =\frac{2}{x} \sum_{r=0} ^{\infty }(-1)^{r} (\nu + 2 r \mathtt{k}) \mathtt{W}^{\mathtt{k}}_{ \nu + 2r \mathtt{k}, c}(x), \end{aligned}$$
(2.6)
$$\begin{aligned}& \frac{d}{dx} \bigl( x^{\frac{\nu }{\mathtt{k}}} \mathtt{W}^{ \mathtt{k}}_{\nu , c}(x) \bigr) =\frac{x^{\frac{\nu }{\mathtt{k}}}}{ \mathtt{k}} \mathtt{W}^{\mathtt{k}}_{\nu -\mathtt{k}, c}(x), \end{aligned}$$
(2.7)
$$\begin{aligned}& \frac{d}{dx} \bigl( x^{-\frac{\nu }{\mathtt{k}}} \mathtt{W}^{ \mathtt{k}}_{\nu , c}(x) \bigr) =-c x^{-\frac{\nu }{\mathtt{k}}} \mathtt{W}^{\mathtt{k}}_{\nu +\mathtt{k}, c}(x), \end{aligned}$$
(2.8)
$$\begin{aligned}& \frac{d^{m}}{dx^{m}} \bigl( \mathtt{W}^{\mathtt{k}}_{\nu , c}(x) \bigr) = \frac{1}{2^{m} \mathtt{k}^{m}} \sum_{n=0}^{m} (-1)^{n} \left ( \textstyle\begin{array}{@{}c@{}} m \\ n \end{array}\displaystyle \right ) c^{n} \mathtt{k}^{n} \mathtt{W}^{\mathtt{k}}_{\nu -m \mathtt{k}+2 n \mathtt{k}, c}(x) \quad \textit{for all } m \in \mathbb{N}. \end{aligned}$$
(2.9)
Proof
Relation (2.5) follows by subtracting (2.4) from (2.3).
Next to establish (2.6), let us rewrite (2.5) as
$$\begin{aligned} \mathtt{W}_{\nu -\mathtt{k}, c}^{\mathtt{k}} (x) + c \mathtt{k} \mathtt{W}_{\nu +\mathtt{k}, c}^{\mathtt{k}}(x) = 2 \frac{\nu }{x} \mathtt{W}_{\nu , c}^{\mathtt{k}}(x). \end{aligned}$$
(2.10)
Now multiply both sides of (2.10) by \(-c \mathtt{k}\) and replace ν by \(\nu +2\mathtt{k}\). Then we have
$$\begin{aligned} - c \mathtt{k} \mathtt{W}_{\nu +\mathtt{k}, c}^{\mathtt{k}} (x) -c ^{2} \mathtt{k}^{2} \mathtt{W}_{\nu +3 \mathtt{k}, c}^{\mathtt{k}}(x) = -2 c \mathtt{k} \frac{\nu +2 \mathtt{k}}{x}\mathtt{W}_{\nu +2 \mathtt{k}, c}^{\mathtt{k}}(x). \end{aligned}$$
(2.11)
Similarly, multiplying both sides of (2.10) by \(c^{2} \mathtt{k}^{2}\) and replacing ν by \(\nu +4\mathtt{k}\) give
$$\begin{aligned} c^{2} \mathtt{k}^{2} \mathtt{W}_{\nu +3 \mathtt{k}, c}^{\mathtt{k}} (x) +c^{3} \mathtt{k}^{3} \mathtt{W}_{\nu +5 \mathtt{k}, c}^{\mathtt{k}}(x) = 2 c^{2}\mathtt{k}^{2} \frac{\nu +4 \mathtt{k}}{x} \mathtt{W}_{\nu +4 \mathtt{k}, c}^{\mathtt{k}}(x). \end{aligned}$$
(2.12)
Continuing and adding them lead to (2.6).
From definition (1.9) it is clear that
$$\begin{aligned} x^{\frac{\nu }{\mathtt{k}}}\mathtt{W}_{\nu , c}^{\mathtt{k}} (x) = \sum_{r=0}^{\infty }\frac{(-c)^{r} }{ \Gamma_{\mathtt{k}}(r \mathtt{k}+ \nu + \mathtt{k})2^{2r+\frac{\nu }{\mathtt{k}}} r!} ( x ) ^{2r+\frac{2\nu }{\mathtt{k}}}. \end{aligned}$$
(2.13)
The derivative of (2.13) with respect to x is
$$\begin{aligned} \frac{d}{dx} \bigl( x^{\frac{\nu }{\mathtt{k}}}\mathtt{W}_{\nu , c}^{ \mathtt{k}} (x) \bigr) &=\sum_{r=0}^{\infty } \frac{(-c)^{r} (2r+\frac{2 \nu }{\mathtt{k}}) }{ \Gamma_{\mathtt{k}}(r \mathtt{k}+ \nu + \mathtt{k})2^{2r+\frac{\nu }{\mathtt{k}}} r!} ( x ) ^{2r+\frac{2 \nu }{\mathtt{k}}-1} \\ &=\frac{x^{\frac{\nu }{\mathtt{k}}}}{\mathtt{k}}\sum_{r=0}^{\infty } \frac{(-c)^{r} }{ \Gamma_{\mathtt{k}}(r \mathtt{k}+ \nu ) r!} \biggl( \frac{x}{2} \biggr) ^{2r+\frac{\nu }{\mathtt{k}}-1} \\ &= \frac{x^{\frac{\nu }{\mathtt{k}}}}{ \mathtt{k}}\mathtt{W}_{\nu -\mathtt{k}, c}^{\mathtt{k}} (x). \end{aligned}$$
Similarly,
$$\begin{aligned} \frac{d}{dx} \bigl( x^{-\frac{\nu }{\mathtt{k}}}\mathtt{W}_{\nu , c} ^{\mathtt{k}} (x) \bigr) &=\sum_{r=1}^{\infty } \frac{(-c)^{r} 2r }{ \Gamma_{\mathtt{k}}(r \mathtt{k}+ \nu + \mathtt{k})2^{2r+\frac{\nu }{ \mathtt{k}}} r!} ( x ) ^{2r-1} \\ &=x^{-\frac{\nu }{\mathtt{k}}}\sum_{r=1}^{\infty } \frac{(-c)^{r} }{ \Gamma_{\mathtt{k}}(r \mathtt{k}+ \nu +\mathtt{k}) (r-1)!} \biggl( \frac{x}{2} \biggr) ^{2r+\frac{\nu }{\mathtt{k}}-1} \\ &=x^{-\frac{\nu }{\mathtt{k}}}\sum_{r=0}^{\infty } \frac{(-c)^{r+1} }{ \Gamma_{\mathtt{k}}(r \mathtt{k}+ \nu +2\mathtt{k}) r!} \biggl( \frac{x}{2} \biggr) ^{2r+\frac{\nu }{\mathtt{k}}+1} \\ & =-c x^{-\frac{\nu }{\mathtt{k}}} \mathtt{W}_{\nu +\mathtt{k}, c}^{\mathtt{k}} (x). \end{aligned}$$
Identity (2.9) can be proved by using mathematical induction on m. Recall that
$$ \left ( \textstyle\begin{array}{@{}c@{}} r \\ r \end{array}\displaystyle \right ) =\left ( \textstyle\begin{array}{@{}c@{}} r \\ 0 \end{array}\displaystyle \right ) =1 $$
and
$$ \left ( \textstyle\begin{array}{@{}c@{}} r \\ n \end{array}\displaystyle \right ) +\left ( \textstyle\begin{array}{@{}c@{}} r \\ n-1 \end{array}\displaystyle \right ) = \left ( \textstyle\begin{array}{@{}c@{}} r+1 \\ n \end{array}\displaystyle \right ) . $$
For \(m=1\), the proof of identity (2.9) is equivalent to showing that
$$\begin{aligned} 2 \mathtt{k} \frac{d}{dx}\mathtt{W}_{\nu , c}^{\mathtt{k}} (x) &= \mathtt{W}_{\nu -\mathtt{k}, c}^{\mathtt{k}} (x) - c \mathtt{k} \mathtt{W}_{\nu +\mathtt{k}, c}^{\mathtt{k}}(x). \end{aligned}$$
(2.14)
This relation can be obtained by simply adding (2.3) and (2.4). Thus, identity (2.9) holds for \(m=1\).
Assume that identity (2.9) also holds for any \(m=r \geq 2\), that is,
$$\begin{aligned} \frac{d^{r}}{dx^{r}} \bigl( \mathtt{W}^{\mathtt{k}}_{\nu , c}(x) \bigr) &= \frac{1}{2^{m} \mathtt{k}^{r}} \sum_{n=0}^{r} (-1)^{n} \left ( \textstyle\begin{array}{@{}c@{}} r \\ n \end{array}\displaystyle \right ) c^{n} \mathtt{k}^{n} \mathtt{W}^{\mathtt{k}}_{\nu -r \mathtt{k}+2 n \mathtt{k}, c}(x). \end{aligned}$$
This implies, for \(m=r+1\),
$$\begin{aligned} &\frac{d^{r+1}}{dx^{r+1}} \bigl( \mathtt{W}^{\mathtt{k}}_{\nu , c}(x) \bigr) \\ &\quad = \frac{1}{2^{r} \mathtt{k}^{r}} \sum_{n=0}^{r} (-1)^{n} \left ( \textstyle\begin{array}{@{}c@{}} r \\ n \end{array}\displaystyle \right ) c^{n} \mathtt{k}^{n} \frac{d}{dr}\mathtt{W}^{\mathtt{k}}_{ \nu -r \mathtt{k}+2 n \mathtt{k}, c}(x) \\ &\quad = \frac{1}{2^{r+1} \mathtt{k}^{r+1}} \sum_{n=0}^{r} (-1)^{n} \left ( \textstyle\begin{array}{@{}c@{}} r \\ n \end{array}\displaystyle \right ) c^{n} \mathtt{k}^{n} \bigl(\mathtt{W}^{\mathtt{k}}_{\nu -(r+1) \mathtt{k}+2 n \mathtt{k}, c}(x)-c \mathtt{k}\mathtt{W}^{\mathtt{k}} _{\nu -(r-1) \mathtt{k}+2 n \mathtt{k}, c}(x) \bigr) \\ &\quad = \frac{1}{2^{r+1} \mathtt{k}^{r+1}} \sum_{n=0}^{r} (-1)^{n} \left ( \textstyle\begin{array}{@{}c@{}} r \\ n \end{array}\displaystyle \right ) c^{n} \mathtt{k}^{n} \mathtt{W}^{\mathtt{k}}_{\nu -(r+1) \mathtt{k}+2 n \mathtt{k}, c}(x) \\ & \quad\quad {}- \frac{1}{2^{r+1} \mathtt{k}^{r+1}} \sum_{n=0}^{r} (-1)^{n} \left ( \textstyle\begin{array}{@{}c@{}} r \\ n \end{array}\displaystyle \right ) c^{n+1} \mathtt{k}^{n+1}\mathtt{W}^{\mathtt{k}}_{\nu -(r-1) \mathtt{k}+2 n \mathtt{k}, c}(x) \\ &\quad =\frac{1}{2^{r+1} \mathtt{k}^{r+1}} \Biggl[ \mathtt{W}^{\mathtt{k}} _{\nu -(r+1) \mathtt{k}, c}(x) +\sum _{n=1}^{r} (-1)^{r} \left ( \left ( \textstyle\begin{array}{@{}c@{}} r \\ n \end{array}\displaystyle \right ) +\left ( \textstyle\begin{array}{@{}c@{}} r \\ n-1 \end{array}\displaystyle \right ) \right ) \mathtt{W}^{\mathtt{k}}_{\nu -(r+1) \mathtt{k}+2n \mathtt{k}, c}(x) \\ & \quad \quad {} -(-1)^{r} c^{r+1}\mathtt{k}^{r+1} \mathtt{W}^{\mathtt{k}}_{ \nu +(r+1) \mathtt{k}, c}(x) \Biggr] \\ &\quad =\frac{1}{2^{r+1} \mathtt{k}^{r+1}} \Biggl[ \left ( \textstyle\begin{array}{@{}c@{}} r+1 \\ 0 \end{array}\displaystyle \right ) \mathtt{W}^{\mathtt{k}}_{\nu -(r+1) \mathtt{k}, c}(x) \\ &\quad \quad {}+\sum_{n=1}^{r} (-1)^{r} \left (\textstyle\begin{array}{@{}c@{}} r+1 \\ n \end{array}\displaystyle \right ) \mathtt{W}^{\mathtt{k}}_{\nu -(r+1) \mathtt{k}+2n \mathtt{k}, c}(x) \\ & \quad \quad {} +(-1)^{r+1} \left ( \textstyle\begin{array}{@{}c@{}} r+1 \\ r+1 \end{array}\displaystyle \right ) c^{r+1} \mathtt{k}^{r+1}\mathtt{W}^{\mathtt{k}}_{\nu -(r+1) \mathtt{k}+2(r+1) \mathtt{k}, c}(x) \Biggr] \\ &\quad =\frac{1}{2^{r+1} \mathtt{k}^{r+1}} \sum_{n=0}^{r+1} (-1)^{r} \left ( \textstyle\begin{array}{@{}c@{}} r+1 \\ n \end{array}\displaystyle \right ) \mathtt{W}^{\mathtt{k}}_{\nu -(r+1) \mathtt{k}+2n \mathtt{k},c}(x). \end{aligned}$$
Hence, identity (2.9) is concluded by the mathematical induction on m. □

2.3 Integral representations of k-Bessel functions

Now we will derive two integral representations of the functions \(\mathtt{W}_{\nu , c}^{\mathtt{k}}\). For this purpose, we need to recall the k-Beta functions from [15]. The k version of the beta functions is defined by
$$\begin{aligned} \mathtt{B}_{\mathtt{k}}(x, y)=\frac{ \Gamma_{\mathtt{k}}(x) \Gamma_{\mathtt{k}}(y)}{\Gamma_{\mathtt{k}}(x+y)}= \frac{1}{\mathtt{k}} \int_{0}^{1} t^{\frac{x}{\mathtt{k}}-1}(1-t)^{\frac{y}{ \mathtt{k}}-1}\,dt. \end{aligned}$$
(2.15)
Substituting t by \(t^{2}\) on the integral in (2.15), it follows that
$$\begin{aligned} \mathtt{B}_{\mathtt{k}}(x, y)=\frac{2}{\mathtt{k}} \int_{0}^{1} t^{\frac{2x}{ \mathtt{k}}-1} \bigl(1-t^{2} \bigr)^{\frac{y}{\mathtt{k}}-1}\,dt. \end{aligned}$$
(2.16)
Let \(x=(r+1) \mathtt{k}\) and \(y=\nu \). Then from (2.15) and (2.16) we have
$$\begin{aligned} \frac{ 1}{\Gamma_{\mathtt{k}}(r \mathtt{k}+\nu +\mathtt{k})}=\frac{2}{ \Gamma_{\mathtt{k}}((r+1) \mathtt{k}) \Gamma_{\mathtt{k}}(\nu )} \int _{0}^{1} t^{2r+1} \bigl(1-t^{2} \bigr)^{\frac{\nu }{\mathtt{k}}-1}\,dt. \end{aligned}$$
(2.17)
According to [15], we have the identity \(\Gamma_{\mathtt{k}}( \mathtt{k} x)= \mathtt{k}^{x-1} \Gamma (x)\). This gives
$$\begin{aligned} \frac{ 1}{\Gamma_{\mathtt{k}}(r \mathtt{k}+\nu +\mathtt{k})}=\frac{2}{ \mathtt{k}^{r}\Gamma (r+1) \Gamma_{\mathtt{k}}(\nu )} \int_{0}^{1} t ^{2r+1} \bigl(1-t^{2} \bigr)^{\frac{\nu }{\mathtt{k}}-1}\,dt. \end{aligned}$$
(2.18)
Now (1.9) and (2.18) together yield the first integral representation
$$\begin{aligned} \mathtt{W}_{\nu , c}^{\mathtt{k}} (x) & = \frac{2}{\Gamma_{\mathtt{k}}( \nu )} \biggl( \frac{x }{2} \biggr) ^{\frac{\nu }{\mathtt{k}}} \int_{0} ^{1} t \bigl(1-t^{2} \bigr)^{\frac{\nu }{\mathtt{k}}-1} \sum_{r=0}^{\infty } \frac{(-c)^{r} }{ \Gamma (r+1) r!} \biggl( \frac{x t}{2 \sqrt{\mathtt{k}}} \biggr) ^{2r}\,dt \\ &=\frac{2}{\Gamma_{\mathtt{k}}(\nu )} \biggl( \frac{x }{2} \biggr) ^{\frac{ \nu }{\mathtt{k}}} \int_{0}^{1} t \bigl(1-t^{2} \bigr)^{\frac{\nu }{\mathtt{k}}-1} \mathcal{W}_{0, 1, c} \biggl( \frac{x t}{\sqrt{\mathtt{k}}} \biggr)\,dt, \end{aligned}$$
(2.19)
where \(\mathcal{W}_{p, b, c}\) is defined in (1.8).
For the second integral representation, substitute \(x= r+\mathtt{k}/2\) and \(y= \nu +\mathtt{k}/2\) into (2.16). Then (2.17) can be rewritten as
$$\begin{aligned} \frac{ 1}{\Gamma_{\mathtt{k}}(r \mathtt{k}+\nu +\mathtt{k})}=\frac{2}{ \Gamma_{\mathtt{k}} ( ( r+\frac{1}{2} ) \mathtt{k} ) \Gamma_{\mathtt{k}} ( \nu +\frac{\mathtt{k}}{2} ) } \int_{0} ^{1} t^{2r} \bigl(1-t^{2} \bigr)^{\frac{\nu }{\mathtt{k}}-\frac{1}{2}}\,dt. \end{aligned}$$
(2.20)
Again, the identity \(\Gamma_{\mathtt{k}}(\mathtt{k} x)= \mathtt{k} ^{x-1} \Gamma (x)\) yields
$$\begin{aligned} \Gamma_{\mathtt{k}} \biggl( \biggl( r+\frac{1}{2} \biggr) \mathtt{k} \biggr) =\mathtt{k}^{r-\frac{1}{2}}\Gamma \biggl( r+\frac{1}{2} \biggr) . \end{aligned}$$
(2.21)
Further, the Legendre duplication formula (see [4, 6])
$$ \Gamma {(z)}\Gamma { \biggl( z+ \frac{1}{2} \biggr) }= 2^{1-2z} \sqrt{\pi } \Gamma {(2z)} $$
(2.22)
shows that
$$ \Gamma \biggl( r+\frac{1}{2} \biggr) r!= r \Gamma \biggl( r+ \frac{1}{2} \biggr) \Gamma (r)= \frac{\sqrt{\pi } (2r)!}{2^{2r}}. $$
This, together with (2.20) and (2.21), reduces the series (1.9) of \(\mathtt{W}^{\mathtt{k}}_{\nu , c}\) to
$$\begin{aligned} \mathtt{W}_{\nu , c}^{\mathtt{k}} (x) & = \frac{2\sqrt{\mathtt{k}}}{ \Gamma_{\mathtt{k}} ( \nu +\frac{\mathtt{k}}{2} ) } \biggl( \frac{x }{2} \biggr) ^{\frac{\nu }{\mathtt{k}}} \int_{0}^{1} \bigl(1-t^{2} \bigr)^{\frac{ \nu }{\mathtt{k}}-\frac{1}{2}} \sum_{r=0}^{\infty } \frac{(-c)^{r} }{ \Gamma (r+1) r!} \biggl( \frac{x t}{2 \sqrt{\mathtt{k}}} \biggr) ^{2r}\,dt \\ &=\frac{2\sqrt{\mathtt{k}}}{\sqrt{\pi }\Gamma_{\mathtt{k}} ( \nu +\frac{ \mathtt{k}}{2} ) } \biggl( \frac{x }{2} \biggr) ^{\frac{\nu }{ \mathtt{k}}} \int_{0}^{1} \bigl(1-t^{2} \bigr)^{\frac{\nu }{\mathtt{k}}- \frac{1}{2}} \sum_{r=0}^{\infty } \frac{(-c)^{r} }{ (2r)!} \biggl( \frac{x t}{ \sqrt{\mathtt{k}}} \biggr) ^{2r}\,dt. \end{aligned}$$
(2.23)
Finally, for \(c=\pm \alpha^{2}\), \(\alpha \in \mathbb{R}\), representation (2.23) respectively leads to
$$\begin{aligned} \mathtt{W}_{\nu , \alpha^{2}}^{\mathtt{k}} (x) =\frac{2\sqrt{ \mathtt{k}}}{\sqrt{\pi }\Gamma_{\mathtt{k}} ( \nu +\frac{ \mathtt{k}}{2} ) } \biggl( \frac{x }{2} \biggr) ^{\frac{\nu }{ \mathtt{k}}} \int_{0}^{1} \bigl(1-t^{2} \bigr)^{\frac{\nu }{\mathtt{k}}- \frac{1}{2}} \cos \biggl( \frac{\alpha x t}{ \sqrt{\mathtt{k}}} \biggr)\,dt \end{aligned}$$
(2.24)
and
$$\begin{aligned} \mathtt{W}_{\nu , -\alpha^{2}}^{\mathtt{k}} (x) =\frac{2\sqrt{ \mathtt{k}}}{\sqrt{\pi }\Gamma_{\mathtt{k}} ( \nu +\frac{ \mathtt{k}}{2} ) } \biggl( \frac{x }{2} \biggr) ^{\frac{\nu }{ \mathtt{k}}} \int_{0}^{1} \bigl(1-t^{2} \bigr)^{\frac{\nu }{\mathtt{k}}- \frac{1}{2}} \cosh \biggl( \frac{\alpha x t}{ \sqrt{\mathtt{k}}} \biggr)\,dt. \end{aligned}$$
(2.25)
Example 2.1
If \(\nu =\mathtt{k}/2\), then from (2.24) computations give the relation between sine and generalized k-Bessel functions by
$$ \sin \biggl( \frac{\alpha x}{\sqrt{\mathtt{k}}} \biggr) = \frac{\alpha }{\mathtt{k}}\sqrt{ \frac{\pi x}{2}}\mathtt{W}_{\frac{\nu }{ \mathtt{k}}, \alpha^{2}}^{\mathtt{k}} (x). $$
Similarly, the relation
$$ \sinh \biggl( \frac{\alpha x}{\sqrt{\mathtt{k}}} \biggr) = \frac{\alpha }{\mathtt{k}}\sqrt{ \frac{\pi x}{2}}\mathtt{W}_{\frac{\nu }{ \mathtt{k}}, -\alpha^{2}}^{\mathtt{k}} (x) $$
can be derived from (2.25).

3 Monotonicity and log-convexity properties

This section is devoted to discuss the monotonicity and log-convexity properties of the modified k-Bessel function \(\mathtt{W} _{\nu , -1}^{\mathtt{k}}=\mathtt{I}_{\nu }^{\mathtt{k}}\). As consequences of those results, we derive several functional inequalities for \(\mathtt{I}_{\nu }^{\mathtt{k}}\).
The following result of Biernacki and Krzyż [7] will be required.
Lemma 3.1
([7])
Consider the power series \(f(x)=\sum_{k=0} ^{\infty }a_{k} x^{k}\) and \(g(x)=\sum_{k=0}^{\infty }b_{k} x^{k}\), where \(a_{k} \in \mathbb{R}\) and \(b_{k} > 0\) for all k. Further, suppose that both series converge on \(\vert x \vert < r\). If the sequence \(\{a_{k}/b_{k} \}_{k\geq 0}\) is increasing (or decreasing), then the function \(x \mapsto f(x)/g(x)\) is also increasing (or decreasing) on \((0,r)\).
The lemma still holds when both f and g are even or both are odd functions.
We now state and prove our main results in this section. Consider the functions
$$\begin{aligned} \mathcal{I}_{\nu }^{\mathtt{k}}(x):= \biggl( \frac{2}{x} \biggr) ^{\frac{ \nu }{\mathtt{k}}}\Gamma_{\mathtt{k}} (\nu +\mathtt{k}) \mathtt{I} _{\nu }^{\mathtt{k}}(x)=\sum_{r=0}^{\infty }f_{r}( \nu ) x^{2r}, \end{aligned}$$
(3.1)
where
$$\begin{aligned} \begin{aligned} & \mathtt{I}_{\nu }^{\mathtt{k}}(x)= \mathtt{W}_{\nu , -1}^{\mathtt{k}} (x) =\sum_{r=0}^{\infty }\frac{1 }{ \Gamma_{\mathtt{k}}(r \mathtt{k}+ \nu + \mathtt{k}) r!} \biggl( \frac{x}{2} \biggr) ^{2r+\frac{\nu }{ \mathtt{k}}} \quad \mbox{and} \\ &f_{r}(\nu )= \frac{\Gamma_{ \mathtt{k}}{(\nu +\mathtt{k})}}{\Gamma_{\mathtt{k}}{(r{\mathtt{k}}+ \nu +\mathtt{k})}4^{r} r!}. \end{aligned} \end{aligned}$$
(3.2)
Then we have the following properties.
Theorem 3.1
Let \(\mathtt{k}>0\). The following results are true for the modified k-Bessel functions:
(a)
If \(\nu \geq \mu >-\mathtt{k}\), then the function \(x \mapsto {\mathcal{I}_{\mu }^{\mathtt{k}}(x)}/ {\mathcal{I}_{\nu } ^{\mathtt{k}}(x)}\) is increasing on \(\mathbb{R}\).
 
(b)
The function \(\nu \mapsto \mathcal{I}^{\mathtt{k}}_{\nu + \mathtt{k}}(x) /\mathcal{I}^{\mathtt{k}}_{\nu }(x)\) is increasing on \((-\mathtt{k}, \infty )\), that is, for \(\nu \geq \mu >-\mathtt{k}\),
$$ \mathcal{I}_{\nu +\mathtt{k}}^{\mathtt{k}}(x)\mathcal{I}_{\mu }^{ \mathtt{k}}(x) \geq \mathcal{I}_{\nu }^{\mathtt{k}}(x)\mathcal{I}_{ \mu +\mathtt{k}}^{\mathtt{k}}(x) $$
(3.3)
for any fixed \(x>0\) and \(\mathtt{k}>0\).
 
(c)
The function \(\nu \mapsto \mathcal{I}_{\nu }^{\mathtt{k}}(x)\) is decreasing and log-convex on \((-\mathtt{k}, \infty )\) for each fixed \(x >0\).
 
Proof
(a) From (3.1) it follows that
$$\begin{aligned} \frac{\mathcal{I}^{\mathtt{k}}_{\nu }(x)}{\mathcal{I}^{\mathtt{k}} _{\mu }(x)} =\frac{\sum_{r=0}^{\infty }f_{r}(\nu ) x^{2r}}{\sum_{r=0} ^{\infty }f_{r}(\mu ) x^{2r}}. \end{aligned}$$
Denote \(w_{r}:=f_{r}(\nu )/f_{r}(\mu )\). Then
$$ w_{r}= \frac{\Gamma_{\mathtt{k}}{(\nu +\mathtt{k})}\Gamma_{\mathtt{k}} {(r{\mathtt{k}}+\mu +\mathtt{k})}}{\Gamma_{\mathtt{k}}{(\mu + \mathtt{k})} \Gamma_{\mathtt{k}}{(r{\mathtt{k}}+\nu +\mathtt{k})}}. $$
Now, using the property \(\Gamma_{\mathtt{k}}{(y+\mathtt{k})}=y \Gamma_{\mathtt{k}}{(y)}\), we can show that
$$\begin{aligned} \frac{w_{r+1}}{w_{r}} &= \frac{\Gamma_{\mathtt{k}}{(r{\mathtt{k}}+ \nu +\mathtt{k})}\Gamma_{\mathtt{k}} {(r{\mathtt{k}}+\mu +2\mathtt{k})}}{ \Gamma_{\mathtt{k}}{(r{\mathtt{k}}+\mu +\mathtt{k})} \Gamma_{ \mathtt{k}}{(r{\mathtt{k}}+\nu +2\mathtt{k})}} =\frac{r{\mathtt{k}}+ \mu +\mathtt{k}}{r{\mathtt{k}}+\nu +\mathtt{k}}\leq 1 \end{aligned}$$
for all \(\nu \geq \mu >-\mathtt{k}\). Hence, conclusion (a) follows from the Lemma 3.1.
(b) Let \(\nu \geq \mu >-\mathtt{k}\). It follows from part (a) that
$$\begin{aligned} \frac{d}{dx} \biggl( \frac{\mathcal{I}^{\mathtt{k}}_{\nu }(x)}{ \mathcal{I}^{\mathtt{k}}_{\mu }(x)} \biggr) \geq 0 \end{aligned}$$
on \((0,\infty )\). Thus
$$\begin{aligned} \bigl( \mathcal{I}^{\mathtt{k}}_{\nu }(x) \bigr) ' \bigl( \mathcal{I} ^{\mathtt{k}}_{\mu }(x) \bigr) - \bigl( \mathcal{I}^{\mathtt{k}}_{ \nu }(x) \bigr) \bigl( \mathcal{I}^{\mathtt{k}}_{\mu }(x) \bigr) ' \geq 0. \end{aligned}$$
(3.4)
It now follows from (2.8) that
$$\begin{aligned} \frac{x}{2} \bigl(\mathcal{I}^{\mathtt{k}}_{\nu +k}(x) \mathcal{I} ^{\mathtt{k}}_{\mu }(x)-\mathcal{I}^{\mathtt{k}}_{\mu +k}(x) \mathcal{I}^{\mathtt{k}}_{\nu }(x) \bigr) \geq 0, \end{aligned}$$
whence \(\mathcal{I}^{\mathtt{k}}_{\nu +k}/\mathcal{I}^{\mathtt{k}} _{\nu }\) is increasing for \(\nu >-\mathtt{k}\) and for some fixed \(x >0\), which concludes (b).
(c) It is clear that, for all \(\nu >-\mathtt{k}\),
$$ f_{r}(\nu )= \frac{\Gamma_{\mathtt{k}}{(\nu +\mathtt{k})}}{ \Gamma_{\mathtt{k}}{(r{\mathtt{k}}+\nu +\mathtt{k})}4^{r} r!}>0. $$
A logarithmic differentiation of \(f_{r}(\nu )\) with respect to ν yields
$$\begin{aligned} \frac{f_{r}'(\nu )}{f_{r}(\nu )}= \Psi_{\mathtt{k}}(\nu +\mathtt{k})- \Psi_{\mathtt{k}}(r \mathtt{k}+\nu +\mathtt{k})\leq 0 \end{aligned}$$
since \(\Psi_{\mathtt{k}}\) are increasing functions on \((-\mathtt{k}, \infty )\). This implies that \(f_{r}(\nu )\) is decreasing.
Thus, for \(\mu \geq \nu >-\mathtt{k}\), it follows that
$$\begin{aligned} \sum_{r=0}^{\infty }f_{r}(\nu ) x^{2r} \geq \sum_{r=0}^{\infty }f_{r}( \mu ) x^{2r}, \end{aligned}$$
which is equivalent to say that the function \(\nu \mapsto \mathcal{I} ^{\mathtt{k}}_{\nu }\) is decreasing on \((-\mathtt{k}, \infty )\) for some fixed \(x >0\).
The twice logarithmic differentiation of \(f_{r}(\nu )\) yields
$$\begin{aligned} \frac{\partial^{2}}{\partial \nu^{2}} (\log \bigl(f_{r}(\nu ) \bigr) &= \Psi_{k}'(\nu +\mathtt{k})-\Psi_{k}'(r \mathtt{k}+\nu +\mathtt{k}) \\ &=\sum_{n=0}^{\infty } \biggl( \frac{1}{(n\mathtt{k}+\nu +\mathtt{k})^{2}} - \frac{1}{(n\mathtt{k}+r\mathtt{k}+\nu +\mathtt{k})^{2}} \biggr) \\ &=\sum_{n=0}^{\infty }\frac{r \mathtt{k}(2n \mathtt{k}+ r \mathtt{k}+2 \nu +2\mathtt{k}) }{(n\mathtt{k}+\nu +\mathtt{k})^{2}(n\mathtt{k}+r \mathtt{k}+\nu +\mathtt{k})^{2}} \geq 0 \end{aligned}$$
for all \(\mathtt{k}>0\) and \(\nu > -\mathtt{k}\). Since, a sum of log-convex functions is log-convex, it follows that \(\nu \to \mathcal{I}_{\nu }^{\mathtt{k}}\) is log-convex on \((-\mathtt{k}, \infty )\) for each fixed \(x>0\). □
Remark 3.1
One of the most significance consequences of the Theorem 3.1 is the Turán-type inequality for the function \(\mathcal{I}_{\nu }^{\mathtt{k}}\). From the definition of log-convexity it follows from Theorem 3.1(c) that
$$\begin{aligned} \mathcal{I}_{\alpha \nu_{1}+(1-\alpha )\nu_{2}}^{\mathtt{k}}(x) \leq \bigl( \mathcal{I}_{\nu_{1}}^{\mathtt{k}} \bigr) ^{\alpha }(x) \bigl( \mathcal{I}_{\nu_{2}}^{\mathtt{k}} \bigr) ^{1-\alpha }(x), \end{aligned}$$
for \(\alpha \in [0,1]\), \(\nu_{1}, \nu_{2} > -\mathtt{k}\), and \(x >0\). For any \(a\in \mathbb{R}\) and \(\nu \geq -k\), by choosing \(\alpha =1/2, \nu_{1}=\nu -a\), and \(\nu_{2}=\nu +a\), this inequality yields the reverse Turán-type inequality
$$\begin{aligned} \bigl( \mathcal{I}_{\nu }^{\mathtt{k}}(x) \bigr) ^{2} - \mathcal{I}_{ \nu -\mathtt{a}}^{\mathtt{k}}(x) \mathcal{I}_{\nu +\mathtt{a}}^{ \mathtt{k}}(x) \leq 0 \end{aligned}$$
(3.5)
for any \(\nu \geq \vert a \vert -\mathtt{k}\).
Our final result is based on the Chebyshev integral inequality [26, p. 40], which states the following: suppose f and g are two integrable functions and monotonic in the same sense (either both decreasing or both increasing). Let \(q: (a, b) \to \mathbb{R}\) be a positive integrable function. Then
$$\begin{aligned} \biggl( \int_{a}^{b} q(t) f(t)\,dt \biggr) \biggl( \int_{a}^{b} q(t) g(t)\,dt \biggr) \leq \biggl( \int_{a}^{b} q(t)\,dt \biggr) \biggl( \int_{a}^{b} q(t) f(t) g(t)\,dt \biggr) . \end{aligned}$$
(3.6)
Inequality (3.6) is reversed if f and g are monotonic in the opposite sense.
The following function is required:
$$\begin{aligned} \mathcal{J}_{\nu }^{\mathtt{k}}(x):= \biggl( \frac{2}{x} \biggr) ^{\frac{ \nu }{\mathtt{k}}}\Gamma_{\mathtt{k}} (\nu +\mathtt{k}) \mathtt{J} _{\nu }^{\mathtt{k}}(x)=\sum_{r=0}^{\infty }g_{r}( \nu ) x^{2r}, \end{aligned}$$
(3.7)
where
$$\begin{aligned} \begin{aligned} &\mathtt{J}_{\nu }^{\mathtt{k}}(x)= \mathtt{W}_{\nu , 1}^{\mathtt{k}} (x) =\sum_{r=0}^{\infty }\frac{(-1)^{r} }{ \Gamma_{\mathtt{k}}(r \mathtt{k}+ \nu + \mathtt{k}) r!} \biggl( \frac{x}{2} \biggr) ^{2r+\frac{ \nu }{\mathtt{k}}} \quad \text{and} \\ &g_{r}(\nu )= \frac{(-1)^{r} \Gamma_{\mathtt{k}}{(\nu +\mathtt{k})}}{\Gamma_{\mathtt{k}}{(r{\mathtt{k}}+ \nu +\mathtt{k})}4^{r} r!}. \end{aligned} \end{aligned}$$
(3.8)
Theorem 3.2
Let \(\mathtt{k}>0\). Then, for \(\nu \in (-3\mathtt{k}/4,- \mathtt{k}/2] \cup [\mathtt{k}/2, \infty ) \),
$$\begin{aligned} \mathcal{I}_{\nu }^{\mathtt{k}}(x)\mathcal{I}_{\nu + \frac{\mathtt{k}}{2}}^{\mathtt{k}}(x) \leq \frac{\sqrt{\mathtt{k}}}{x} \sin \biggl( \frac{x}{\mathtt{k}} \biggr) \mathcal{I}_{2\nu +\frac{\mathtt{k}}{2}}^{\mathtt{k}}(x) \end{aligned}$$
(3.9)
and
$$\begin{aligned} \mathcal{J}_{\nu }^{\mathtt{k}}(x)\mathcal{J}_{\nu + \frac{\mathtt{k}}{2}}^{\mathtt{k}}(x) \leq \frac{\sqrt{\mathtt{k}}}{x} \sinh \biggl( \frac{x}{\mathtt{k}} \biggr) \mathcal{J}_{2\nu +\frac{\mathtt{k}}{2}}^{\mathtt{k}}(x). \end{aligned}$$
(3.10)
Inequalities (3.9) and (3.10) are reversed if \(\nu \in (-\mathtt{k}/2, \mathtt{k}/2)\).
Proof
Define the functions q, f, and g on \([0, 1]\) as
$$ q(t)= \cos \biggl( \frac{x t}{\sqrt{\mathtt{k}}} \biggr) , \qquad f(t)= \bigl(1-t ^{2} \bigr)^{\frac{v}{\mathtt{k}}-\frac{1}{2}}, \qquad g(t)= \bigl(1-t^{2} \bigr)^{\frac{v}{ \mathtt{k}}+\frac{1}{2}}. $$
Then, for any \(x \geq 0\),
$$\begin{aligned}& \int_{0}^{1} q(t)\,dt = \int_{0}^{1} \cos \biggl( \frac{x t}{\sqrt{ \mathtt{k}}} \biggr)\,dt= \frac{\sqrt{\mathtt{k}}}{x} \sin \biggl( \frac{x }{\sqrt{\mathtt{k}}} \biggr) , \\& \int_{0}^{1} q(t) f(t)\,dt = \int_{0}^{1} \cos \biggl( \frac{x t}{\sqrt{ \mathtt{k}}} \biggr) \bigl(1-t^{2} \bigr)^{\frac{v}{\mathtt{k}}-\frac{1}{2}}\,dt= \mathcal{I}_{\nu }^{\mathtt{k}}(x) \quad \text{if } \nu \geq - \mathtt{k}, \\& \int_{0}^{1} q(t) g(t)\,dt = \int_{0}^{1} \cos \biggl( \frac{x t}{\sqrt{ \mathtt{k}}} \biggr) \bigl(1-t^{2} \bigr)^{\frac{v}{\mathtt{k}}+\frac{1}{2}}\,dt= \mathcal{I}_{\nu +\mathtt{k}}^{\mathtt{k}}(x) \quad \text{if } \nu \geq - 2\mathtt{k}, \\& \int_{0}^{1} q(t) f(t) g(t)\,dt = \int_{0}^{1} \cos \biggl( \frac{x t}{\sqrt{\mathtt{k}}} \biggr) \bigl(1-t^{2} \bigr)^{\frac{2 v}{\mathtt{k}}}\,dt= \mathcal{I}_{2 \nu +\frac{\mathtt{k}}{2}}^{\mathtt{k}}(x) \quad \text{if } \nu \geq - \frac{3\mathtt{k}}{4}. \end{aligned}$$
Since the functions f and g both are decreasing for \(\nu \geq \mathtt{k}/2\) and both are increasing for \(\nu \in (-3\mathtt{k}/4,- \mathtt{k}/2]\), inequality (3.6) yields (3.9). On the other hand, if \(\nu \in (-\mathtt{k}/2, \mathtt{k}/2)\), then the function f is increasing, but g is decreasing, and hence inequality (3.9) is reversed.
Similarly, inequality (3.10) can be derived from (3.6) by choosing
$$ q(t)= \cosh \biggl( \frac{x t}{\sqrt{\mathtt{k}}} \biggr) , \qquad f(t)= \bigl(1-t ^{2} \bigr)^{\frac{v}{\mathtt{k}}-\frac{1}{2}}, \qquad g(t)= \bigl(1-t^{2} \bigr)^{\frac{v}{ \mathtt{k}}+\frac{1}{2}}. $$
 □

4 Conclusion

It is shown that the generalized k-Bessel functions \(W^{k}_{\nu ,c}\) are solutions of a second-order differential equation, which for \(k=1\) is reduced to the well-known second-order Bessel differential equation. It is also proved that the generalized modified k-Bessel function \(\mathcal{I}_{\nu }^{\mathtt{k}}\) is decreasing and log-convex on \((-\mathtt{k}, \infty )\) for each fixed \(x >0\). Several other inequalities, especially the Turán-type inequality and reverse Turán-type inequality for \(\mathcal{I}_{\nu }^{\mathtt{k}}\) are established.
Furthermore, we investigate the pattern for zeroes of \(\mathcal{W} _{\nu }^{\mathtt{k}, 1}\) in two ways: (i) with respect to fixed k and variation of ν and (ii) with respect to fixed ν and variation of k.
From the data in Table 1 and Table 2, we can observe that the zeroes of \(\mathtt{W}_{ \nu , 1}^{\mathtt{k}}\) are increasing in in both cases. However, we have no any analytical proof for this monotonicity of the zeroes of \(W^{k}_{ \nu ,1}\). As there are several works on the zeroes of the classical Bessel functions, the zeroes of \(\mathtt{W}_{ \nu , 1}^{\mathtt{k}}\) would be an interesting topic for future investigations. The monotonicity of the zeroes of \(\mathtt{W}_{ \nu , c}^{\mathtt{k}}\) with respect to c and fixed k, ν will be another open problem for further studies.
Table 1
Positive zeroes of \(\mathtt{W}_{ \nu , 1}^{\mathtt{k}}\) for fixed ν and different k
k
0.5
1
1.5
2
2.5
ν = −0.4 and c = 1
1st zero
0.662422
1.75098
2.42334
2.95334
3.40423
2nd zero
2.96686
4.87852
6.24148
7.3588
8.32849
3rd zero
5.2018
8.01663
10.0812
11.7913
13.2836
ν = 0.5 and c = 1
1st zero
2.70943
3.14159
3.55493
3.93277
4.28026
2nd zero
4.96077
6.28319
7.38858
8.35255
9.21757
3rd zero
7.19373
9.42478
11.2315
12.7879
14.1752
Table 2
Positive zeroes of \(\mathtt{W}_{ \nu , 1}^{\mathtt{k}}\) for different ν and k
ν
−0.4
−0.3
0
0.5
1
1.5
2
2.5
k = 0.5 and c = 1
1st zero
0.662422
0.97534
1.70047
2.70943
3.63143
4.51146
5.36577
6.20238
2nd zero
2.96686
3.21271
3.90328
4.96077
5.95189
6.90209
7.82393
8.72471
3rd zero
5.2018
5.43751
6.11911
7.19373
8.21647
9.20314
10.1629
11.1017
k = 1 and c = 1
1st zero
1.75098
1.92285
2.40483
3.14159
3.83171
4.49341
5.13562
5.76346
2nd zero
4.87852
5.04213
5.52008
6.28319
7.01559
7.72525
8.41724
9.09501
3rd zero
8.01663
8.17785
8.65373
9.42478
10.1735
10.9041
11.6198
12.3229
k = 1.5 and c = 1
1st zero
2.42334
2.55767
2.9453
3.55493
4.13426
4.69286
5.2362
5.76774
2nd zero
6.24148
6.37291
6.76069
7.38858
7.9979
8.5923
9.1744
9.74613
3rd zero
10.0812
10.2116
10.5986
11.2315
11.8513
12.4599
13.0587
13.6488
k = 2 and c = 1
1st zero
2.95334
3.06754
3.40094
3.93277
4.44288
4.93703
5.41885
5.8908
2nd zero
7.3588
7.47176
7.80657
8.35255
8.88577
9.40825
9.92154
10.4269
3rd zero
11.7913
11.9037
12.2382
12.7879
13.3286
13.8616
14.3875
14.907

Availability of data and materials

Not applicable. The data in both Tables 1 and 2 are generated using Mathematica 9.

Competing interests

The authors declare that they have no competing interests.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literature
1.
go back to reference Baricz, Á: Generalized Bessel Functions of the First Kind. Lecture Notes in Mathematics, vol. 1994. Springer, Berlin (2010) MATH Baricz, Á: Generalized Bessel Functions of the First Kind. Lecture Notes in Mathematics, vol. 1994. Springer, Berlin (2010) MATH
3.
go back to reference Baricz, Á, Ponnusamy, S., Singh, S.: Turán type inequalities for general Bessel functions. Math. Inequal. Appl. 19(2), 709–719 (2016) MathSciNetMATH Baricz, Á, Ponnusamy, S., Singh, S.: Turán type inequalities for general Bessel functions. Math. Inequal. Appl. 19(2), 709–719 (2016) MathSciNetMATH
4.
go back to reference Abramowitz, M., Stegun, I.A. (eds.): A Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. In Dover Books on Mathematics. Dover, New York (1965) Abramowitz, M., Stegun, I.A. (eds.): A Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. In Dover Books on Mathematics. Dover, New York (1965)
6.
go back to reference Andrews, G.E., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathematics and Its Applications, vol. 71. Cambridge Univ. Press, Cambridge (1999) CrossRefMATH Andrews, G.E., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathematics and Its Applications, vol. 71. Cambridge Univ. Press, Cambridge (1999) CrossRefMATH
7.
go back to reference Biernacki, M., Krzyż, J.: On the monotonity of certain functionals in the theory of analytic functions. Ann. Univ. Mariae Curie-Skłodowska, Sect. A 9, 135–147 (1955) MathSciNetMATH Biernacki, M., Krzyż, J.: On the monotonity of certain functionals in the theory of analytic functions. Ann. Univ. Mariae Curie-Skłodowska, Sect. A 9, 135–147 (1955) MathSciNetMATH
9.
go back to reference Cesarano, C., Assante, D.: A note on generalized Bessel functions. Int. J. Math. Models Methods Appl. Sci. 7(6), 625–629 (2013) Cesarano, C., Assante, D.: A note on generalized Bessel functions. Int. J. Math. Models Methods Appl. Sci. 7(6), 625–629 (2013)
12.
go back to reference Deligne, P., Etingof, P., Freed, D., Jeffrey, L., Kazhdan, D., Morgan, J., Morrison, D., Witten, E.: Quantum Fields and Strings: A Course for Mathematicians. Am. Math. Soc. Providence (1999) MATH Deligne, P., Etingof, P., Freed, D., Jeffrey, L., Kazhdan, D., Morgan, J., Morrison, D., Witten, E.: Quantum Fields and Strings: A Course for Mathematicians. Am. Math. Soc. Providence (1999) MATH
15.
go back to reference Díaz, R., Pariguan, E.: On hypergeometric functions and Pochhammer k-symbol. Divulg. Mat. 15, 179–192 (2007) MathSciNetMATH Díaz, R., Pariguan, E.: On hypergeometric functions and Pochhammer k-symbol. Divulg. Mat. 15, 179–192 (2007) MathSciNetMATH
16.
go back to reference Dimitrov, D.K.: Higher order Turán inequalities. Proc. Am. Math. Soc. 126, 2033–2037 (1998) CrossRefMATH Dimitrov, D.K.: Higher order Turán inequalities. Proc. Am. Math. Soc. 126, 2033–2037 (1998) CrossRefMATH
18.
go back to reference Gasper, G.: An inequality of Turán type for Jacobi polynomials. Proc. Am. Math. Soc. 32, 435–439 (1972) Gasper, G.: An inequality of Turán type for Jacobi polynomials. Proc. Am. Math. Soc. 32, 435–439 (1972)
20.
go back to reference Gehlot, K.S.: Recurrence relations of K-Bessel’s function. Thai J. Math. 14, 677–685 (2016) MathSciNetMATH Gehlot, K.S.: Recurrence relations of K-Bessel’s function. Thai J. Math. 14, 677–685 (2016) MathSciNetMATH
22.
go back to reference Gerhold, S., Kauers, M.: A computer proof of Turán’s inequality. JIPAM. J. Inequal. Pure Appl. Math. 7(2), Article ID 42 (2000) MATH Gerhold, S., Kauers, M.: A computer proof of Turán’s inequality. JIPAM. J. Inequal. Pure Appl. Math. 7(2), Article ID 42 (2000) MATH
23.
go back to reference Gerhold, S., Kauers, M.: A procedure for proving special function inequalities involving a discrete parameter. In: Proceedings of the 2005 International Symposium on Symbolic and Algebraic Computation (ISSAC’05), Beijing, China, July 24–27, 2005, pp. 156–162. ACM, New York (2005). https://doi.org/10.1145/1073884.1073907 CrossRef Gerhold, S., Kauers, M.: A procedure for proving special function inequalities involving a discrete parameter. In: Proceedings of the 2005 International Symposium on Symbolic and Algebraic Computation (ISSAC’05), Beijing, China, July 24–27, 2005, pp. 156–162. ACM, New York (2005). https://​doi.​org/​10.​1145/​1073884.​1073907 CrossRef
25.
go back to reference Laforgia, A., Natalini, P.: Turán-type inequalities for some special functions. JIPAM. J. Inequal. Pure Appl. Math. 7(1), Article ID 22 (2006) MATH Laforgia, A., Natalini, P.: Turán-type inequalities for some special functions. JIPAM. J. Inequal. Pure Appl. Math. 7(1), Article ID 22 (2006) MATH
27.
go back to reference Mubeen, S., Naz, M., Rahman, G.: A note on k-hypergeometric differential equations. J. Inequal. Spec. Funct. 4(3), 38–43 (2013) MathSciNetMATH Mubeen, S., Naz, M., Rahman, G.: A note on k-hypergeometric differential equations. J. Inequal. Spec. Funct. 4(3), 38–43 (2013) MathSciNetMATH
28.
go back to reference Nantomah, K., Prempeh, E.: Some inequalities for the k-digamma function. Math. Æterna 4, 521–525 (2014) MathSciNet Nantomah, K., Prempeh, E.: Some inequalities for the k-digamma function. Math. Æterna 4, 521–525 (2014) MathSciNet
29.
go back to reference Szwarc, R.: Positivity of Turán determinants for orthogonal polynomials. In: Ross, K.A., Singh, A.I., Anderson, J.M., Sunder, V.S., Litvinov, G.L., Wildberger, N.J. (eds.) Harmonic Analysis and Hypergroups, Delhi, 1995. Trends in Mathematics, pp. 165–182. Birkhäuser, Boston (1998). https://doi.org/10.1007/978-0-8176-4348-5_11 CrossRef Szwarc, R.: Positivity of Turán determinants for orthogonal polynomials. In: Ross, K.A., Singh, A.I., Anderson, J.M., Sunder, V.S., Litvinov, G.L., Wildberger, N.J. (eds.) Harmonic Analysis and Hypergroups, Delhi, 1995. Trends in Mathematics, pp. 165–182. Birkhäuser, Boston (1998). https://​doi.​org/​10.​1007/​978-0-8176-4348-5_​11 CrossRef
30.
go back to reference Turán, P.: On the zeros of the polynomials of Legendre. Čas. Pěst. Math. Fys. 75, 113–122 (1950) MathSciNetMATH Turán, P.: On the zeros of the polynomials of Legendre. Čas. Pěst. Math. Fys. 75, 113–122 (1950) MathSciNetMATH
Metadata
Title
Differential equation and inequalities of the generalized k-Bessel functions
Authors
Saiful R. Mondal
Mohamed S. Akel
Publication date
01-12-2018
Publisher
Springer International Publishing
Published in
Journal of Inequalities and Applications / Issue 1/2018
Electronic ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-018-1772-1

Other articles of this Issue 1/2018

Journal of Inequalities and Applications 1/2018 Go to the issue

Premium Partner