Skip to main content
Top
Published in: Wireless Personal Communications 4/2019

23-08-2019

Differential Game for Distributed Power Control in Device-to-Device Communications Underlaying Cellular Networks

Authors: Minh-Thuyen Thi, Amr Radwan, Thong Huynh, Won-Joo Hwang

Published in: Wireless Personal Communications | Issue 4/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the formulating of power control for wireless networks, the radio channel is commonly formulated using static models of optimization or game theory. In these models, the optimization programming or static game is played from time point to time point. Therefore, this approach neglects the dynamics of the time-varying channels and assumes the statistical independence between the successive time points. In this paper, we utilize differential equations to model the wireless links, then formulate a differential game for the power control problem in device-to-device (D2D) communications underlaying cellular networks. The game players are the D2D pairs, which manage their transmit power by solving the continuous-time optimal control problems. The time-dependant cost function allows us to optimize the long-term expected cost, instead of point-wise instantaneous cost. We formulate the problem in an affine quadratic form that admits analytical solutions. The unique feedback Nash equilibrium of the game is shown to exist. From a stochastic optimal control algorithm, we design a distributed power control mechanism that converges to the game’s equilibrium. The simulation results show that the proposed approach achieves significant performance improvement compared to the point-wise based approaches.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Huang, M., Caines, P. E., & Malhamé, R. P. (2004). Uplink power adjustment in wireless communication systems: A stochastic control analysis. IEEE Transactions on Automatic Control, 49(10), 1693–1708.MathSciNetCrossRef Huang, M., Caines, P. E., & Malhamé, R. P. (2004). Uplink power adjustment in wireless communication systems: A stochastic control analysis. IEEE Transactions on Automatic Control, 49(10), 1693–1708.MathSciNetCrossRef
2.
go back to reference Charalambous, C. D., Djouadi, S. M., & Denic, S. Z. (2005). Stochastic power control for wireless networks via sdes: Probabilistic QoS measures. IEEE Transactions on Information Theory, 51(12), 4396–4401.MathSciNetCrossRef Charalambous, C. D., Djouadi, S. M., & Denic, S. Z. (2005). Stochastic power control for wireless networks via sdes: Probabilistic QoS measures. IEEE Transactions on Information Theory, 51(12), 4396–4401.MathSciNetCrossRef
3.
go back to reference Holliday, T., Goldsmith, A., Glynn, P., & Bambos, N. (2004). Distributed power and admission control for time varying wireless networks. In IEEE global telecommunications conference, 2004 (GLOBECOM’04) (Vol. 2, pp. 768–774). Holliday, T., Goldsmith, A., Glynn, P., & Bambos, N. (2004). Distributed power and admission control for time varying wireless networks. In IEEE global telecommunications conference, 2004 (GLOBECOM’04) (Vol. 2, pp. 768–774).
4.
go back to reference Chamberland, J. F., & Veeravalli, V. V. (2003). Decentralized dynamic power control for cellular CDMA systems. IEEE Transactions on Wireless Communications, 2(3), 549–559.CrossRef Chamberland, J. F., & Veeravalli, V. V. (2003). Decentralized dynamic power control for cellular CDMA systems. IEEE Transactions on Wireless Communications, 2(3), 549–559.CrossRef
5.
go back to reference Mériaux, F., Lasaulce, S., & Tembine, H. (2013). Stochastic differential games and energy-efficient power control. Dynamic Games and Applications, 3(1), 3–23.MathSciNetCrossRef Mériaux, F., Lasaulce, S., & Tembine, H. (2013). Stochastic differential games and energy-efficient power control. Dynamic Games and Applications, 3(1), 3–23.MathSciNetCrossRef
6.
go back to reference Lee, N., Lin, X., Andrews, J. G., & Heath, R. W. (2015). Power control for D2D underlaid cellular networks: Modeling, algorithms, and analysis. IEEE Journal on Selected Areas in Communications, 33(1), 1–13.CrossRef Lee, N., Lin, X., Andrews, J. G., & Heath, R. W. (2015). Power control for D2D underlaid cellular networks: Modeling, algorithms, and analysis. IEEE Journal on Selected Areas in Communications, 33(1), 1–13.CrossRef
7.
go back to reference Ren, Y., Liu, F., Liu, Z., Wang, C., & Ji, Y. (2015). Power control in D2D-based vehicular communication networks. IEEE Transactions on Vehicular Technology, 64(12), 5547–5562.CrossRef Ren, Y., Liu, F., Liu, Z., Wang, C., & Ji, Y. (2015). Power control in D2D-based vehicular communication networks. IEEE Transactions on Vehicular Technology, 64(12), 5547–5562.CrossRef
8.
go back to reference Yanfang, X., Yin, R., Han, T., & Guanding, Y. (2014). Dynamic resource allocation for device-to-device communication underlaying cellular networks. International Journal of Communication Systems, 27(10), 2408–2425.CrossRef Yanfang, X., Yin, R., Han, T., & Guanding, Y. (2014). Dynamic resource allocation for device-to-device communication underlaying cellular networks. International Journal of Communication Systems, 27(10), 2408–2425.CrossRef
9.
go back to reference Meshkati, F., Chiang, M., Poor, H. V., & Schwartz, S. C. (2006). A game-theoretic approach to energy-efficient power control in multicarrier CDMA systems. IEEE Journal on Selected Areas in Communications, 24(6), 1115–1129.CrossRef Meshkati, F., Chiang, M., Poor, H. V., & Schwartz, S. C. (2006). A game-theoretic approach to energy-efficient power control in multicarrier CDMA systems. IEEE Journal on Selected Areas in Communications, 24(6), 1115–1129.CrossRef
10.
go back to reference Wang, X., Zheng, W., Zhaoming, L., Wen, X., & Li, W. (2016). Dense femtocell networks power self-optimization: An exact potential game approach. International Journal of Communication Systems, 29(1), 16–32. IJCS-13-0930.R1.CrossRef Wang, X., Zheng, W., Zhaoming, L., Wen, X., & Li, W. (2016). Dense femtocell networks power self-optimization: An exact potential game approach. International Journal of Communication Systems, 29(1), 16–32. IJCS-13-0930.R1.CrossRef
11.
go back to reference Buzzi, S., & Saturnino, D. (2011). A game-theoretic approach to energy-efficient power control and receiver design in cognitive CDMA wireless networks. IEEE Journal of Selected Topics in Signal Processing, 5(1), 137–150.CrossRef Buzzi, S., & Saturnino, D. (2011). A game-theoretic approach to energy-efficient power control and receiver design in cognitive CDMA wireless networks. IEEE Journal of Selected Topics in Signal Processing, 5(1), 137–150.CrossRef
12.
go back to reference Chen, X., Hu, R. Q., & Qian, Y. (2014). Distributed resource and power allocation for device-to-device communications underlaying cellular network. In 2014 IEEE global communications conference (pp. 4947–4952). Chen, X., Hu, R. Q., & Qian, Y. (2014). Distributed resource and power allocation for device-to-device communications underlaying cellular network. In 2014 IEEE global communications conference (pp. 4947–4952).
13.
go back to reference Le Treust, M., & Lasaulce, S. (2010). A repeated game formulation of energy-efficient decentralized power control. IEEE Transactions on Wireless Communications, 9(9), 2860–2869.CrossRef Le Treust, M., & Lasaulce, S. (2010). A repeated game formulation of energy-efficient decentralized power control. IEEE Transactions on Wireless Communications, 9(9), 2860–2869.CrossRef
14.
go back to reference Thuc, T. K., Hossain, E., & Tabassum, H. (2015). Downlink power control in two-tier cellular networks with energy-harvesting small cells as stochastic games. IEEE Transactions on Communications, 63(12), 5267–5282.CrossRef Thuc, T. K., Hossain, E., & Tabassum, H. (2015). Downlink power control in two-tier cellular networks with energy-harvesting small cells as stochastic games. IEEE Transactions on Communications, 63(12), 5267–5282.CrossRef
15.
go back to reference Semasinghe, P., & Hossain, E. (2015). Downlink power control in self-organizing dense small cells underlaying macrocells: A mean field game. IEEE Transactions on Mobile Computing, 15(2), 350–363.CrossRef Semasinghe, P., & Hossain, E. (2015). Downlink power control in self-organizing dense small cells underlaying macrocells: A mean field game. IEEE Transactions on Mobile Computing, 15(2), 350–363.CrossRef
16.
go back to reference Huang, M., Caines, P. E., & Malhamé, R. P. (2007). Large-population cost-coupled LQG problems with nonuniform agents: Individual-mass behavior and decentralized \(\varepsilon\)-Nash equilibria. IEEE Transactions on Automatic Control, 52(9), 1560–1571.MathSciNetCrossRef Huang, M., Caines, P. E., & Malhamé, R. P. (2007). Large-population cost-coupled LQG problems with nonuniform agents: Individual-mass behavior and decentralized \(\varepsilon\)-Nash equilibria. IEEE Transactions on Automatic Control, 52(9), 1560–1571.MathSciNetCrossRef
17.
go back to reference Charalambous, C. D., & Menemenlis, N. (1999). Stochastic models for long-term multipath fading channels and their statistical properties. In Proceedings of the 38th IEEE conference on decision and control, 1999 (Vol. 5, pp. 4947–4952). IEEE. Charalambous, C. D., & Menemenlis, N. (1999). Stochastic models for long-term multipath fading channels and their statistical properties. In Proceedings of the 38th IEEE conference on decision and control, 1999 (Vol.  5, pp. 4947–4952). IEEE.
18.
go back to reference Nocedal, J., & Wright, S. (2006). Numerical optimization. Berlin: Springer.MATH Nocedal, J., & Wright, S. (2006). Numerical optimization. Berlin: Springer.MATH
19.
go back to reference Song, L., Niyato, D., Han, Z., & Hossain, E. (2015). Wireless device-to-device communications and networks. Cambridge: Cambridge University Press.CrossRef Song, L., Niyato, D., Han, Z., & Hossain, E. (2015). Wireless device-to-device communications and networks. Cambridge: Cambridge University Press.CrossRef
20.
go back to reference Basar, T., & Olsder, G. J. (1999). Dynamic noncooperative game theory (2nd edn.). Classics in applied mathematics. Society for Industrial and Applied Mathematics. Basar, T., & Olsder, G. J. (1999). Dynamic noncooperative game theory (2nd edn.). Classics in applied mathematics. Society for Industrial and Applied Mathematics.
21.
go back to reference Han, Z. (2012). Game theory in wireless and communication networks: Theory, models, and applications. Cambridge: Cambridge University Press.MATH Han, Z. (2012). Game theory in wireless and communication networks: Theory, models, and applications. Cambridge: Cambridge University Press.MATH
22.
go back to reference Song, H., Jong Yeol, R., Choi, W., & Schober, R. (2015). Joint power and rate control for device-to-device communications in cellular systems. IEEE Transactions on Wireless Communications, 14(10), 5750–5762.CrossRef Song, H., Jong Yeol, R., Choi, W., & Schober, R. (2015). Joint power and rate control for device-to-device communications in cellular systems. IEEE Transactions on Wireless Communications, 14(10), 5750–5762.CrossRef
23.
go back to reference Chiang, M., Hande, P., Lan, T., & Tan, C. W. (2008). Power control in wireless cellular networks. Foundations and Trends® in Networking, 2(4), 381–533.CrossRef Chiang, M., Hande, P., Lan, T., & Tan, C. W. (2008). Power control in wireless cellular networks. Foundations and Trends® in Networking, 2(4), 381–533.CrossRef
Metadata
Title
Differential Game for Distributed Power Control in Device-to-Device Communications Underlaying Cellular Networks
Authors
Minh-Thuyen Thi
Amr Radwan
Thong Huynh
Won-Joo Hwang
Publication date
23-08-2019
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 4/2019
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-019-06682-7

Other articles of this Issue 4/2019

Wireless Personal Communications 4/2019 Go to the issue