Skip to main content
Top

2017 | OriginalPaper | Chapter

5. Digital Filters

Author : Jose Maria Giron-Sierra

Published in: Digital Signal Processing with Matlab Examples, Volume 1

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter covers a central aspect of digital signal processing: digital filters. The digital signal processing systems use samples of input signals, which constitute series of numbers. The result may be also series of numbers, to be used as output signals. The signal processing computations usually take into account a record of recent values of the input and output samples. In the case of linear digital filters, the output y(n) in the instant n, is computed as a linear combination of the input u(n) and previous samples of input and output signals. There are two main classes of digital filters: FIR and IIR. Many types of FIR filters are based on using a window; while others are based on optimization of certain criteria. With respect to IIR filters, there are types corresponding to the filters introduced in chapter 4, and other more related to impulse responses. The chapter introduces also some special filters, like the non-causal filter, and details of pertinent functions and tools of the MATLAB Signal Processing Toolbox.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference C.S. Burrus, A.W. Soewito, R.A. Gopinath, Least squared error FIR filter design with transition bands. IEEE Trans. Signal Process. 40(6), 1327–1340 (1992)CrossRefMATH C.S. Burrus, A.W. Soewito, R.A. Gopinath, Least squared error FIR filter design with transition bands. IEEE Trans. Signal Process. 40(6), 1327–1340 (1992)CrossRefMATH
3.
go back to reference S. Chakraborty, Advantages of Blackman window over Hamming window method for designing FIR filter. Int. J. Comput. Sci. Eng. Technol. (IJCSET) 4(8), 1181–1189 (2013) S. Chakraborty, Advantages of Blackman window over Hamming window method for designing FIR filter. Int. J. Comput. Sci. Eng. Technol. (IJCSET) 4(8), 1181–1189 (2013)
4.
go back to reference E. Cubukcu, Root Raised Cosine (RRC) Filters and Pulse Shaping in Communication Systems (2012) E. Cubukcu, Root Raised Cosine (RRC) Filters and Pulse Shaping in Communication Systems (2012)
5.
go back to reference M.J.L. De Hoon, T.H.J.J. Van der Hagen, H. Schoonewelle, H. Van Dam, Why Yule–Walker should not be used for autoregressive modeling. Ann. Nuclear Energy 23(15), 1219–1228 (1996)CrossRef M.J.L. De Hoon, T.H.J.J. Van der Hagen, H. Schoonewelle, H. Van Dam, Why Yule–Walker should not be used for autoregressive modeling. Ann. Nuclear Energy 23(15), 1219–1228 (1996)CrossRef
9.
go back to reference B. Friedlander, B. Porat, The modified Yule–Walker method of ARMA spectral estimation. IEEE Trans. Aerosp. Electr. Syst. 20(2), 158–173 (1984)MathSciNetCrossRef B. Friedlander, B. Porat, The modified Yule–Walker method of ARMA spectral estimation. IEEE Trans. Aerosp. Electr. Syst. 20(2), 158–173 (1984)MathSciNetCrossRef
10.
go back to reference H.A. Gaberson, A comprehensive windows tutorial. Sound Vibration 40(3), 14–23 (2006) H.A. Gaberson, A comprehensive windows tutorial. Sound Vibration 40(3), 14–23 (2006)
11.
go back to reference K. Gentile, The care and feeding of digital pulse-shaping filters. RF Design 25(4), 50–58 (2002) K. Gentile, The care and feeding of digital pulse-shaping filters. RF Design 25(4), 50–58 (2002)
13.
go back to reference P. Kabal, Time windows for linear prediction of speech. Technical report, Electrical & Computer Engineering, McGill University (2003) P. Kabal, Time windows for linear prediction of speech. Technical report, Electrical & Computer Engineering, McGill University (2003)
14.
go back to reference S.M. Kuo, W.-S.S. Gan, Digital Signal Processors: Architectures, Implementations, and Applications (Prentice Hall, Upper Saddle River, 2004) S.M. Kuo, W.-S.S. Gan, Digital Signal Processors: Architectures, Implementations, and Applications (Prentice Hall, Upper Saddle River, 2004)
16.
go back to reference P. Lynch, The Dolph–Chebyshev window: a simple optimal filter. Mon. Weather Rev. 125(4), 655–660 (1997)CrossRef P. Lynch, The Dolph–Chebyshev window: a simple optimal filter. Mon. Weather Rev. 125(4), 655–660 (1997)CrossRef
17.
go back to reference J.H. McClellan, T.W. Parks, A personal history of the Parks–McClellan algorithm. IEEE Signal Process. Mag. 22(2), 82–86 (2005)CrossRef J.H. McClellan, T.W. Parks, A personal history of the Parks–McClellan algorithm. IEEE Signal Process. Mag. 22(2), 82–86 (2005)CrossRef
18.
go back to reference A. Mehrnia, A.N. Willson Jr., On optimal ifir filter design, in Proceedings of IEEE International Symposium Circuits and Systems, ISCAS’04, vol. 3, pp. 133–136 (2004) A. Mehrnia, A.N. Willson Jr., On optimal ifir filter design, in Proceedings of IEEE International Symposium Circuits and Systems, ISCAS’04, vol. 3, pp. 133–136 (2004)
19.
go back to reference Y. Neuvo, D. Cheng-Yu, S.K. Mitra, Interpolated finite impulse response filters. IEEE Trans. Acoust. Speech Signal Process. 32(3), 563–570 (1984)CrossRef Y. Neuvo, D. Cheng-Yu, S.K. Mitra, Interpolated finite impulse response filters. IEEE Trans. Acoust. Speech Signal Process. 32(3), 563–570 (1984)CrossRef
20.
go back to reference S.J. Orfanidis, Optimum Signal Processing: An Introduction (Collier Macmillan, London, 1988) S.J. Orfanidis, Optimum Signal Processing: An Introduction (Collier Macmillan, London, 1988)
22.
23.
go back to reference T. Saramaki, Finite impulse response filter design, in Handbook for Digital Signal Processing, ed. by S.K. Mitra, J.F. Kaiser (Wiley, New York, 1993), pp. 155–278 T. Saramaki, Finite impulse response filter design, in Handbook for Digital Signal Processing, ed. by S.K. Mitra, J.F. Kaiser (Wiley, New York, 1993), pp. 155–278
24.
go back to reference R.W. Schafer, What is a Savitzky–Golay filter? (Lecture Notes). IEEE Signal Process. Mag. 28(4), 111–117 (2011)CrossRef R.W. Schafer, What is a Savitzky–Golay filter? (Lecture Notes). IEEE Signal Process. Mag. 28(4), 111–117 (2011)CrossRef
27.
go back to reference K. Steiglitz, L.E. McBride, A technique for the identification of linear systems. IEEE Trans. Autom. Control 10(4), 461–464 (1965)CrossRef K. Steiglitz, L.E. McBride, A technique for the identification of linear systems. IEEE Trans. Autom. Control 10(4), 461–464 (1965)CrossRef
28.
go back to reference P. Stoica, T. Soderstrom, The Steiglitz–McBride identification algorithm revisited-convergence analysis and accuracy aspects. IEEE Trans. Autom. Control 26(3), 712–717 (1981)MathSciNetCrossRefMATH P. Stoica, T. Soderstrom, The Steiglitz–McBride identification algorithm revisited-convergence analysis and accuracy aspects. IEEE Trans. Autom. Control 26(3), 712–717 (1981)MathSciNetCrossRefMATH
Metadata
Title
Digital Filters
Author
Jose Maria Giron-Sierra
Copyright Year
2017
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-2534-1_5