1 Introduction
2 Related Work
2.1 Quality Data Prediction and Traceability Technology
2.2 Overview of DT Applications in the Production Phase
3 Framework of DT-based Quality Management for the Assembly Process of Aerospace Products
4 Key Technologies
4.1 Numerical Prediction of Quality Data Using Grey-Markov Model
4.1.1 Grey Model
Grade | Average relative error q | Ratio of MSE C | Residual probability P |
---|---|---|---|
I | <0.01 | <0.35 | >0.95 |
II | <0.05 | <0.50 | <0.80 |
III | <0.10 | <0.65 | <0.70 |
IV | >0.20 | >0.65 | <0.60 |
4.1.2 Revision of Predicted Residuals Using Markov Model
4.2 Assembly System Status Prediction Using T-K Statistical Control Chart
4.2.1 T-control Chart for Monitoring the Mean of Quality Data
4.2.2 K-control Chart for Monitoring the Standard Deviation of Quality Data
4.3 Association Rules Mining for Quality Exceptions Based on Apriori Algorithm
4.3.1 Analysis of Quality Influencing Factors
4.3.2 Principle of Apriori Algorithm
5 Case Study and System Implementation
5.1 Numerical Prediction Results of Quality Data
5.1.1 Data Selection
Product code | Centroid offset(mm) | Product code | Centroid offset(mm) |
---|---|---|---|
A4-1 | 5.918 | A4-8 | 7.560 |
A4-2 | 5.205 | A4-9 | 8.467 |
A4-3 | 4.393 | A4-10 | 9.642 |
A4-4 | 4.520 | A4-11 | 10.811 |
A4-5 | 5.105 | A4-12 | 11.898 |
A4-6 | 5.818 | A4-13 | 13.548 |
A4-7 | 6.647 | A4-14 | 14.537 |
5.1.2 Establishment of Grey Forecasting Model
5.1.3 Grey Prediction Model Test
Product code | Original value (mm) | Predicted value (mm) | Residual (mm) | Relative error (%) |
---|---|---|---|---|
A4-1 | 5.918 | 5.918 | 0 | 0 |
A4-2 | 5.205 | 3.891 | 1.314 | 25.24 |
A4-3 | 4.393 | 4.355 | 0.037 | 0.85 |
A4-4 | 4.520 | 4.875 | − 0.354 | 7.84 |
A4-5 | 5.105 | 5.456 | − 0.351 | 6.87 |
A4-6 | 5.818 | 6.106 | − 0.289 | 4.96 |
A4-7 | 6.647 | 6.835 | − 0.188 | 2.83 |
A4-8 | 7.560 | 7.649 | − 0.089 | 1.18 |
A4-9 | 8.467 | 8.562 | − 0.094 | 1.11 |
A4-10 | 9.642 | 9.582 | 0.060 | 0.62 |
A4-11 | 10.811 | 10.725 | 0.086 | 0.79 |
A4-12 | 11.898 | 12.004 | − 0.106 | 0.89 |
A4-13 | 13.548 | 13.435 | 0.113 | 0.84 |
5.1.4 Case of Grey-Markov Model
Interval | State |
---|---|
[− 0.36, − 0.24] | State I: too large |
[− 0.24, − 0.12] | State II: larger |
[− 0.12, 0] | State III: slightly larger |
[0, 0.12] | State IV: slightly smaller |
[0.12, 1.32] | State V: smaller |
Pij | Next moment residual status | Sum | |||||
---|---|---|---|---|---|---|---|
State I | State II | State III | State IV | State V | |||
Current residual status | State I | 2 | 1 | 0 | 0 | 0 | 3 |
State II | 0 | 0 | 1 | 0 | 0 | 1 | |
State III | 0 | 0 | 1 | 2 | 0 | 3 | |
State IV | 2 | 0 | 1 | 1 | 1 | 5 | |
State V | 0 | 0 | 0 | 1 | 0 | 1 |
Product code | Actual value (mm) | Grey model | Grey-Markov model | ||
---|---|---|---|---|---|
Predicted value (mm) | Relative error (%) | Predicted value (mm) | Relative error (%) | ||
A4-14 | 14.537 | 15.037 | 3.44 | 14.737 | 1.38 |
5.2 Assembly System Status Prediction Results
5.2.1 Raw Data Preprocessing
Batch | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 |
---|---|---|---|---|---|---|---|---|
1 | 8.691 | 9.571 | 4.126 | 4.515 | 6.336 | 8.937 | 9.819 | 10.021 |
2 | 4.366 | 7.135 | 3.126 | 3.725 | 4.210 | 7.979 | 9.190 | 9.322 |
3 | 7.978 | 4.715 | 5.226 | 6.687 | 7.804 | 8.045 | 8.159 | 9.188 |
4 | 5.918 | 5.205 | 4.393 | 4.520 | 5.105 | 5.818 | 6.647 | 7.560 |
Batch | A9 | A10 | A11 | A12 | A13 | A14 | A15 | Model |
---|---|---|---|---|---|---|---|---|
1 | 11.005 | 11.365 | 11.472 | 11.479 | 12.147 | 13.255 | 13.672 | S1 |
2 | 10.083 | 10.124 | 10.864 | 11.081 | 11.677 | 12.781 | 12.973 | S1 |
3 | 9.729 | 10.782 | 10.868 | 10.983 | 13.653 | 14.657 | 16.948 | S1 |
4 | 8.467 | 9.642 | 10.811 | 11.898 | 13.548 | 14.537 | 16.890 | S1 |
Batch | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 |
---|---|---|---|---|---|---|---|---|
1 | 5.310 | 7.491 | 7.949 | 8.365 | 8.524 | 9.299 | 9.417 | 9.757 |
2 | 6.066 | 6.595 | 7.975 | 8.008 | 8.349 | 9.148 | 9.873 | 10.051 |
3 | 4.178 | 7.442 | 7.571 | 8.960 | 9.793 | 9.934 | 10.292 | 10.467 |
4 | 6.866 | 7.177 | 7.336 | 7.453 | 8.121 | 8.557 | 8.928 | 9.636 |
Batch | A9 | A10 | A11 | A12 | A13 | A14 | A15 | Model |
---|---|---|---|---|---|---|---|---|
1 | 10.025 | 10.824 | 11.122 | 11.294 | 11.492 | 12.967 | 14.223 | S2 |
2 | 10.785 | 10.910 | 12.261 | 12.340 | 13.484 | 13.948 | 15.688 | S2 |
3 | 10.641 | 10.682 | 11.449 | 11.575 | 11.891 | 12.043 | 12.792 | S2 |
4 | 9.791 | 9.966 | 11.192 | 11.394 | 11.395 | 11.445 | 11.604 | S2 |
5.2.2 Case of T Control Chart
Batch | A1 | A2 | … | A15 | Model | Mean | Standard deviation | \({\overline{\overline X} _j}\) | T |
---|---|---|---|---|---|---|---|---|---|
1 | 8.691 | 9.571 | … | 13.672 | S1 | 9.761 | 2.880 | – | 0.000 |
2 | 4.366 | 7.135 | … | 12.973 | S1 | 8.576 | 3.340 | 9.761 | − 0.561 |
3 | 7.978 | 4.715 | … | 16.948 | S1 | 9.695 | 3.410 | 9.168 | 0.282 |
4 | 5.918 | 5.205 | … | 16.890 | S1 | 8.731 | 3.991 | 9.344 | − 0.298 |
5 | 5.310 | 7.491 | … | 14.223 | S2 | 9.871 | 2.244 | – | 0.000 |
6 | 6.066 | 6.595 | … | 15.688 | S2 | 10.365 | 2.787 | 9.871 | 0.281 |
7 | 4.178 | 7.442 | … | 12.792 | S2 | 9.981 | 2.216 | 10.118 | − 0.113 |
8 | 6.866 | 7.177 | … | 11.604 | S2 | 9.391 | 1.747 | 10.072 | − 0.755 |
5.2.3 Case of K-control Chart
Batch | A1 | A2 | … | A15 | Model | Variance | \(\overline {S_j^2}\) | \(\lambda _{i,j}^{(r)}\) | K |
---|---|---|---|---|---|---|---|---|---|
1 | 8.691 | 9.571 | … | 13.672 | S1 | 8.295 | – | – | 1.000 |
2 | 4.366 | 7.135 | … | 12.973 | S1 | 11.157 | 8.295 | 1.345 | 0.544 |
3 | 7.978 | 4.715 | … | 16.948 | S1 | 11.628 | 9.726 | 1.196 | 0.436 |
4 | 5.918 | 5.205 | … | 16.890 | S1 | 15.927 | 10.360 | 1.537 | 1.081 |
5 | 5.310 | 7.491 | … | 14.223 | S2 | 5.033 | – | – | 1.000 |
6 | 6.066 | 6.595 | … | 15.688 | S2 | 7.766 | 5.033 | 1.543 | 0.794 |
7 | 4.178 | 7.442 | … | 12.792 | S2 | 4.912 | 6.400 | 0.768 | − 0.504 |
8 | 6.866 | 7.177 | … | 11.604 | S2 | 3.052 | 5.904 | 0.517 | − 1.338 |
5.3 Mining Association Rules of Influence Factors for Abnormal Quality Data
Left-hand-side (LHS) | Right-hand-side (RHS) | Support | Confidence | Lift | |
---|---|---|---|---|---|
[1] | {1BAA,3BAE} | => {AN} | 0.180 | 1 | 3.191 |
[2] | {3BAE,S1} | => {AN} | 0.187 | 1 | 3.191 |
[3] | {2BAC,3BAE} | => {AN} | 0.180 | 1 | 3.191 |
[4] | {1BAA,3BAE,CA} | => {AN} | 0.173 | 1 | 3.191 |
[5] | {3BAE,CA,S1} | => {AN} | 0.180 | 1 | 3.191 |
[6] | {2BAC,3BAE,CA} | => {AN} | 0.173 | 1 | 3.191 |
[7] | {1BAA,3BAE,S1} | => {AN} | 0.180 | 1 | 3.191 |
[8] | {1BAA,2BAC,3BAE} | => {AN} | 0.173 | 1 | 3.191 |
[9] | {2BAC,3BAE,S1} | => {AN} | 0.180 | 1 | 3.191 |
[10] | {1BAA,3BAE,CA,S1} | => {AN} | 0.173 | 1 | 3.191 |
[11] | {1BAA,2BAC,3BAE,CA} | => {AN} | 0.167 | 1 | 3.191 |
[12] | {2BAC,3BAE,CA,S1} | => {AN} | 0.173 | 1 | 3.191 |
[13] | {1BAA,2BAC,3BAE,S1} | => {AN} | 0.173 | 1 | 3.191 |
[14] | {1BAA,2BAC,3BAE,CA,S1} | => {AN} | 0.167 | 1 | 3.191 |
[15] | {3BAE,CA} | => {AN} | 0.180 | 0.931 | 2.971 |