Skip to main content
Top
Published in: Topics in Catalysis 5-6/2019

23-02-2019 | Original Paper

Direct Conversion of Levulinic Acid into Valeric Biofuels Using Pd Supported Over Zeolites as Catalysts

Authors: M. Muñoz-Olasagasti, A. Sañudo-Mena, J. A. Cecilia, M. López Granados, P. Maireles-Torres, R. Mariscal

Published in: Topics in Catalysis | Issue 5-6/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A series of Pd-based catalysts was prepared by incipient wetness impregnation over different acidic supports: amorphous SiO2-Al2O3, ZSM5 and beta zeolites. In addition to the effect of the support, other variables like the metal loading (0, 1, 2 and 4 wt%) on ZSM5 were tested in the direct conversion of levulinic acid (LA) to valeric biofuels (valeric acid/ester). The best result, a 92% yield of valeric biofuels, was obtained for a 2 wt% Pd supported on ZSM5 catalyst (2PdZSM5) after 8 h of reaction at 240 °C. Characterization techniques such as FTIR spectroscopy (using deuterated acetonitrile and CO as probe molecules), TEM and XPS were employed to explain this catalytic performance. FTIR spectra with deuterated acetonitrile evidenced the moderate acidity (in terms of concentration and strength) of the 2PdZSM5 catalyst, a desirable feature for the proper realization of this reaction. It has been observed that the acidity of the support favors the Pd dispersion, but it is less relevant for its catalytic properties. Finally, the stability of a representative catalyst was demonstrated under flow conditions for over 90 h, obtaining moderate but stable yields for the 2PdZSM5 catalyst.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Pileidis FD, Titirici MM (2016) Levulinic acid biorefineries: new challenges for efficient utilization of biomass. ChemSusChem 9:562–582CrossRefPubMed Pileidis FD, Titirici MM (2016) Levulinic acid biorefineries: new challenges for efficient utilization of biomass. ChemSusChem 9:562–582CrossRefPubMed
2.
go back to reference García-Sancho C, Fúnez-Núñez I, Moreno-Tost R, Santamaría-González J, Pérez-Inestrosa E, Fierro JLG, Maireles-Torres P (2017) Beneficial effects of calcium chloride on glucose dehydration to 5-hydroxymethylfurfural in the presence of alumina as catalyst. Appl Catal B 206:617–625CrossRef García-Sancho C, Fúnez-Núñez I, Moreno-Tost R, Santamaría-González J, Pérez-Inestrosa E, Fierro JLG, Maireles-Torres P (2017) Beneficial effects of calcium chloride on glucose dehydration to 5-hydroxymethylfurfural in the presence of alumina as catalyst. Appl Catal B 206:617–625CrossRef
4.
go back to reference Yan K, Jarvis C, Gu J, Yan Y (2015) Production and catalytic transformation of levulinic acid: A platform for speciality chemicals and fuels. Renew Sust Energ Rev 51:986–997CrossRef Yan K, Jarvis C, Gu J, Yan Y (2015) Production and catalytic transformation of levulinic acid: A platform for speciality chemicals and fuels. Renew Sust Energ Rev 51:986–997CrossRef
6.
go back to reference Wang J, Jaenicke S, Chuah GK (2014) Zirconium–Beta zeolite as a robust catalyst for the transformation of levulinic acid to γ-valerolactone via Meerwein–Ponndorf–Verley reduction. RSC Adv 4:13481–13489CrossRef Wang J, Jaenicke S, Chuah GK (2014) Zirconium–Beta zeolite as a robust catalyst for the transformation of levulinic acid to γ-valerolactone via Meerwein–Ponndorf–Verley reduction. RSC Adv 4:13481–13489CrossRef
7.
go back to reference Serrano-Ruiz JC, West RM, Dumesic JA (2010) Catalytic conversion of renewable biomass resources to fuels and chemicals. Annu Rev Chem Biomol Eng 1:79–100CrossRefPubMed Serrano-Ruiz JC, West RM, Dumesic JA (2010) Catalytic conversion of renewable biomass resources to fuels and chemicals. Annu Rev Chem Biomol Eng 1:79–100CrossRefPubMed
8.
go back to reference Yan K, Jarvis C, Lafleur T, Qiao Y, Xie X (2013) Novel synthesis of Pd nanoparticles for hydrogenation of biomass-derived platform chemicals showing enhanced catalytic performance. RSC Adv 3:25865–25871CrossRef Yan K, Jarvis C, Lafleur T, Qiao Y, Xie X (2013) Novel synthesis of Pd nanoparticles for hydrogenation of biomass-derived platform chemicals showing enhanced catalytic performance. RSC Adv 3:25865–25871CrossRef
9.
go back to reference Yan K, Lafleur T, Wu G, Liao J, Ceng C, Xie X (2013) Highly selective production of value-added gammavalerolactone from biomass-derived levulinic acid using the robust Pd nanoparticles. Appl Catal A 468:52–58CrossRef Yan K, Lafleur T, Wu G, Liao J, Ceng C, Xie X (2013) Highly selective production of value-added gammavalerolactone from biomass-derived levulinic acid using the robust Pd nanoparticles. Appl Catal A 468:52–58CrossRef
10.
go back to reference Horváth IT, Mehdi H, Fábos V, Boda L, Mika LT (2008) γ-valerolactone, a sustainable liquid for energy and carbon-based chemicals. Green Chem 10:238–242CrossRef Horváth IT, Mehdi H, Fábos V, Boda L, Mika LT (2008) γ-valerolactone, a sustainable liquid for energy and carbon-based chemicals. Green Chem 10:238–242CrossRef
11.
go back to reference Yan K, Yiyi Y, Chai J, Lu Y (2015) Catalytic reactions of gamma-valerolactone: a platform to fuels and value-added chemicals. Appl Catal B 179:292–304CrossRef Yan K, Yiyi Y, Chai J, Lu Y (2015) Catalytic reactions of gamma-valerolactone: a platform to fuels and value-added chemicals. Appl Catal B 179:292–304CrossRef
12.
go back to reference De S, Saha B, Luque R (2015) Hydrodeoxygenation processes: advances on catalytic transformations of biomass-derived platform chemicals into hydrocarbon fuels. Bioresour Technol 178:108–118CrossRefPubMed De S, Saha B, Luque R (2015) Hydrodeoxygenation processes: advances on catalytic transformations of biomass-derived platform chemicals into hydrocarbon fuels. Bioresour Technol 178:108–118CrossRefPubMed
13.
go back to reference Alonso DM, Wettstein SG, Dumesic JA (2013) Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chem 15:584–595CrossRef Alonso DM, Wettstein SG, Dumesic JA (2013) Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chem 15:584–595CrossRef
14.
go back to reference Alonso DM, Wettstein SG, Mellmer MA, Gurbuz EI, Dumesic JA (2013) Integrated conversion of hemicellulose and cellulose from lignocellulosic biomass. Energy Environ Sci 6:76–80CrossRef Alonso DM, Wettstein SG, Mellmer MA, Gurbuz EI, Dumesic JA (2013) Integrated conversion of hemicellulose and cellulose from lignocellulosic biomass. Energy Environ Sci 6:76–80CrossRef
15.
go back to reference Lange JP, Price R, Ayoub PM, Louis J, Petrus L, Clarke L, Gosselink H (2010) Valeric biofuels: a platform of cellulosic transportation fuels. Angew Chem Int Ed 49:4479–4483CrossRef Lange JP, Price R, Ayoub PM, Louis J, Petrus L, Clarke L, Gosselink H (2010) Valeric biofuels: a platform of cellulosic transportation fuels. Angew Chem Int Ed 49:4479–4483CrossRef
16.
go back to reference Dayma G, Halter F, Foucher F, Togbé C, Mounaim-Rouselle C, Dagaut P (2012) Experimental and detailed kinetic modeling study of ethyl pentanoate (ethyl valerate) oxidation in a jet stirred reactor and laminar burning velocities in a spherical combustion chamber. Energy Fuels 26:4735–4748CrossRef Dayma G, Halter F, Foucher F, Togbé C, Mounaim-Rouselle C, Dagaut P (2012) Experimental and detailed kinetic modeling study of ethyl pentanoate (ethyl valerate) oxidation in a jet stirred reactor and laminar burning velocities in a spherical combustion chamber. Energy Fuels 26:4735–4748CrossRef
17.
go back to reference Luo W, Deka U, Beale AM, Van Eck ERH, Bruijnincx PCA, Weckhuysen BM (2013) Ruthenium-catalyzed hydrogenation of levulinic acid: influence of the support and solvent on catalyst selectivity and stability. J Catal 301:175–186CrossRef Luo W, Deka U, Beale AM, Van Eck ERH, Bruijnincx PCA, Weckhuysen BM (2013) Ruthenium-catalyzed hydrogenation of levulinic acid: influence of the support and solvent on catalyst selectivity and stability. J Catal 301:175–186CrossRef
18.
go back to reference Luo W, Bruijnincx PCA, Weckhuysen BM (2014) Selective, one-pot catalytic conversion of levulinic acid to pentanoic acid over Ru/H-ZSM5. J Catal 320:33–41CrossRef Luo W, Bruijnincx PCA, Weckhuysen BM (2014) Selective, one-pot catalytic conversion of levulinic acid to pentanoic acid over Ru/H-ZSM5. J Catal 320:33–41CrossRef
19.
go back to reference Pan T, Deng J, Xu Q, Xu Y, Guo QX, Fu Y (2013) Catalytic conversion of biomass-derived levulinic acid to valerate esters as oxygenated fuels using supported ruthenium catalysts. Green Chem 15:2967–2974CrossRef Pan T, Deng J, Xu Q, Xu Y, Guo QX, Fu Y (2013) Catalytic conversion of biomass-derived levulinic acid to valerate esters as oxygenated fuels using supported ruthenium catalysts. Green Chem 15:2967–2974CrossRef
20.
go back to reference Kon K, Onodera W, Shimizu KI (2014) Selective hydrogenation of levulinic acid to valeric acid and valeric biofuels by a Pt/HMFI catalyst. Catal Sci Technol 4:3227–3234CrossRef Kon K, Onodera W, Shimizu KI (2014) Selective hydrogenation of levulinic acid to valeric acid and valeric biofuels by a Pt/HMFI catalyst. Catal Sci Technol 4:3227–3234CrossRef
21.
go back to reference Lange JP (2011) US Patent 2011/0112326. Shell Int BV Lange JP (2011) US Patent 2011/0112326. Shell Int BV
22.
go back to reference Kumar VV, Naresh G, Deepa S, Bhavani PG, Nagaraju M, Sudhakar M, Chary KVR, Tardio J, Bhargava SK, Venugopal A (2017) Influence of W on the reduction behaviour and Brønsted acidity of Ni/TiO2 catalyst in the hydrogenation of levulinic acid to valeric acid: pyridine adsorbed DRIFTS study. Appl catal A 531:169–176CrossRef Kumar VV, Naresh G, Deepa S, Bhavani PG, Nagaraju M, Sudhakar M, Chary KVR, Tardio J, Bhargava SK, Venugopal A (2017) Influence of W on the reduction behaviour and Brønsted acidity of Ni/TiO2 catalyst in the hydrogenation of levulinic acid to valeric acid: pyridine adsorbed DRIFTS study. Appl catal A 531:169–176CrossRef
23.
go back to reference Xin L, Zhang Z, Qi J, Chadderdon DJ, Qiu Y, Warsko KM, Li W (2013) Electricity storage in biofuels: Selective electrocatalytic reduction of levulinic acid to valeric acid or γ-valerolactone. ChemSusChem 6:674–686CrossRefPubMed Xin L, Zhang Z, Qi J, Chadderdon DJ, Qiu Y, Warsko KM, Li W (2013) Electricity storage in biofuels: Selective electrocatalytic reduction of levulinic acid to valeric acid or γ-valerolactone. ChemSusChem 6:674–686CrossRefPubMed
24.
go back to reference Qiu Y, Xin L, Chadderdon DJ, Qi J, Liang C, Li W (2014) Integrated electrocatalytic processing of levulinic acid and formic acid to produce biofuel intermediate valeric acid. Green Chem 16:1305–1315CrossRef Qiu Y, Xin L, Chadderdon DJ, Qi J, Liang C, Li W (2014) Integrated electrocatalytic processing of levulinic acid and formic acid to produce biofuel intermediate valeric acid. Green Chem 16:1305–1315CrossRef
25.
go back to reference Jung U, Elsen A, Li Y, Smith JG, Small MW, Stach EA, Frenkel AI, Nuzzo RG (2015) Comparative in operando studies in heterogeneous catalysis: atomic and electronic structural features in the hydrogenation of ethylene over supported Pd and Pt catalysts. ACS Catal 5:1539–1551CrossRef Jung U, Elsen A, Li Y, Smith JG, Small MW, Stach EA, Frenkel AI, Nuzzo RG (2015) Comparative in operando studies in heterogeneous catalysis: atomic and electronic structural features in the hydrogenation of ethylene over supported Pd and Pt catalysts. ACS Catal 5:1539–1551CrossRef
26.
go back to reference Chen J, Thomas JM, Sankar G (1994) IR spectroscopic study of CD3CN adsorbed on ALPO-18 molecular sieve and the solid acid catalysts SAPO-18 and MeAPO-18. J Chem Soc Faraday Trans 90:3455–3459CrossRef Chen J, Thomas JM, Sankar G (1994) IR spectroscopic study of CD3CN adsorbed on ALPO-18 molecular sieve and the solid acid catalysts SAPO-18 and MeAPO-18. J Chem Soc Faraday Trans 90:3455–3459CrossRef
27.
go back to reference Mariscal R, López-Granados M, Fierro JLG, Sotelo JL, Martos C, Van Grieken R (2000) Morphology and surface properties of titania-silica hydrophobic xerogels. Langmuir 16:9460–9467CrossRef Mariscal R, López-Granados M, Fierro JLG, Sotelo JL, Martos C, Van Grieken R (2000) Morphology and surface properties of titania-silica hydrophobic xerogels. Langmuir 16:9460–9467CrossRef
28.
go back to reference Van Grieken R, Sotelo JL, Martos C, Fierro JLG, López-Granados M, Mariscal R (2000) Surface modified amorphous titanosilicate catalysts for liquid phase epoxidation. Catal Today 61:49–54CrossRef Van Grieken R, Sotelo JL, Martos C, Fierro JLG, López-Granados M, Mariscal R (2000) Surface modified amorphous titanosilicate catalysts for liquid phase epoxidation. Catal Today 61:49–54CrossRef
29.
go back to reference Wang Z, Wang L, Jiang Y, Hunger M, Huang J (2014) Cooperativity of Brønsted and lewis acid sites on zeolite for glycerol dehydration. ACS Catal 4:1144–1147CrossRef Wang Z, Wang L, Jiang Y, Hunger M, Huang J (2014) Cooperativity of Brønsted and lewis acid sites on zeolite for glycerol dehydration. ACS Catal 4:1144–1147CrossRef
30.
go back to reference Zhang D, Yun-Peng Z, Fan X, Liu ZQ, Wang RY, Wei XY (2018) Catalytic hydrogenation of levulinic acid into gamma-valerolactone over Ni/HZSM-5 catalysts. Catal Surv Asia 22:129–135CrossRef Zhang D, Yun-Peng Z, Fan X, Liu ZQ, Wang RY, Wei XY (2018) Catalytic hydrogenation of levulinic acid into gamma-valerolactone over Ni/HZSM-5 catalysts. Catal Surv Asia 22:129–135CrossRef
31.
go back to reference Aylor AW, Lobree LJ, Reimer JA, Bell AT (1997) Investigations of the dispersion of Pd in H-ZSM-5. J Catal 172:453–462CrossRef Aylor AW, Lobree LJ, Reimer JA, Bell AT (1997) Investigations of the dispersion of Pd in H-ZSM-5. J Catal 172:453–462CrossRef
32.
go back to reference Okumura K, Niwa M (2002) Control of the dispersion of Pd through the interaction with acid sites of zeolite studied by EXAFS. Top Catal 18:85–89CrossRef Okumura K, Niwa M (2002) Control of the dispersion of Pd through the interaction with acid sites of zeolite studied by EXAFS. Top Catal 18:85–89CrossRef
33.
go back to reference Shen Y, Bo X, Tian Z, Wang Y, Guo X, Xie M, Gao F, Lin M, Guo X, Guo X, Ding W (2017) Fabrication of highly dispersed/active ultrafine Pd nanoparticle supported catalysts: a facile solvent-free in situ dispersion/reduction method. Green Chem 19:2646–2652CrossRef Shen Y, Bo X, Tian Z, Wang Y, Guo X, Xie M, Gao F, Lin M, Guo X, Guo X, Ding W (2017) Fabrication of highly dispersed/active ultrafine Pd nanoparticle supported catalysts: a facile solvent-free in situ dispersion/reduction method. Green Chem 19:2646–2652CrossRef
34.
go back to reference Lear T, Marshall R, Lopez-Sanchez JA, Jackson SD, Klapötke TM, Bäumer M, Rupprechter G, Freund HJ, Lennon D (2005) The application of infrared spectroscopy to probe the surface morphology of alumina-supported palladium catalysts. J Chem Phys 123:174706CrossRefPubMed Lear T, Marshall R, Lopez-Sanchez JA, Jackson SD, Klapötke TM, Bäumer M, Rupprechter G, Freund HJ, Lennon D (2005) The application of infrared spectroscopy to probe the surface morphology of alumina-supported palladium catalysts. J Chem Phys 123:174706CrossRefPubMed
35.
go back to reference Agostini G, Pellegrini R, Leofanti G, Bertinetti L, Bertarione S, Groppo E, Zecchina A, Lamberti C (2009) Determination of the particle size, available surface area, and nature of exposed sites for silica—alumina-supported Pd nanoparticles: a multitechnical approach. J Phys Chem C 113:10485–10492CrossRef Agostini G, Pellegrini R, Leofanti G, Bertinetti L, Bertarione S, Groppo E, Zecchina A, Lamberti C (2009) Determination of the particle size, available surface area, and nature of exposed sites for silica—alumina-supported Pd nanoparticles: a multitechnical approach. J Phys Chem C 113:10485–10492CrossRef
36.
go back to reference Mosqueda-Jiménez BI, Jentys A, Seshan K, Lercher JA (2003) On the surface reactions during NO reduction with propene and propane on Ni-exchanged mordenite. Appl Catal B 46:189–202CrossRef Mosqueda-Jiménez BI, Jentys A, Seshan K, Lercher JA (2003) On the surface reactions during NO reduction with propene and propane on Ni-exchanged mordenite. Appl Catal B 46:189–202CrossRef
37.
go back to reference Ivanov P, Papp H (2000) FT-IR study of the isomerization of n-butene over different zeolites. Langmuir 16:7769–7772CrossRef Ivanov P, Papp H (2000) FT-IR study of the isomerization of n-butene over different zeolites. Langmuir 16:7769–7772CrossRef
Metadata
Title
Direct Conversion of Levulinic Acid into Valeric Biofuels Using Pd Supported Over Zeolites as Catalysts
Authors
M. Muñoz-Olasagasti
A. Sañudo-Mena
J. A. Cecilia
M. López Granados
P. Maireles-Torres
R. Mariscal
Publication date
23-02-2019
Publisher
Springer US
Published in
Topics in Catalysis / Issue 5-6/2019
Print ISSN: 1022-5528
Electronic ISSN: 1572-9028
DOI
https://doi.org/10.1007/s11244-019-01147-4

Other articles of this Issue 5-6/2019

Topics in Catalysis 5-6/2019 Go to the issue

Premium Partners