Skip to main content
Top

2012 | OriginalPaper | Chapter

Directions for Use of Density Functional Theory: A Short Instruction Manual for Chemists

Authors : Heiko Jacobsen, Luigi Cavallo

Published in: Handbook of Computational Chemistry

Publisher: Springer Netherlands

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Two aspects are quintessential if one seeks to successfully perform DFT calculations: A basic understanding of how the concepts and models underlying the various manifestations of DFT are built, and an essential knowledge of what can be expected from DFT calculations and how to achieve the most appropriate results. This chapter expands on the development and philosophy of DFT, and aims to illustrate the essentials of DFT in a manner that is intuitively accessible. An analysis of the performance and applicability of DFT focuses on a representative selection of chemical properties, including bond lengths, bond angles, vibrational frequencies, electron affinities and ionization potentials, atomization energies, heats of formation, energy barriers, bond energies hydrogen bonding, weak interactions, spin states, and excited states.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Fiolhais, C., Nogueira, F., & Marques, M. (2003). A primer in density functional theory, Lecture notes in physics. Berlin: Springer.CrossRef Fiolhais, C., Nogueira, F., & Marques, M. (2003). A primer in density functional theory, Lecture notes in physics. Berlin: Springer.CrossRef
go back to reference Koch, W., & Holthausen, M. C. (2002). A chemist’s guide to density functional theory (2nd ed.). Weinheim: Wiley-VCH. Koch, W., & Holthausen, M. C. (2002). A chemist’s guide to density functional theory (2nd ed.). Weinheim: Wiley-VCH.
go back to reference Marques, M. A. L., Ullrich, C. A., Nogueira, F., Rubio, A., Burke, K., & Gross, E. K. U. (2006). Time-dependent density functional theory, Lecture notes in physics. Berlin, Heidelberg: Springer.CrossRef Marques, M. A. L., Ullrich, C. A., Nogueira, F., Rubio, A., Burke, K., & Gross, E. K. U. (2006). Time-dependent density functional theory, Lecture notes in physics. Berlin, Heidelberg: Springer.CrossRef
go back to reference Parr, R. G., & Yang, W. (1989). Density functional theory of atoms and molecules. New York: Oxford University Press. Parr, R. G., & Yang, W. (1989). Density functional theory of atoms and molecules. New York: Oxford University Press.
go back to reference Baerends, E. J., & Ros, P. (1978). Evaluation of the LCAO Hartree-Fock-Slater method – Applications to transition-metal complexes. International Journal of Quantum Chemistry, 12, 169–190. Baerends, E. J., & Ros, P. (1978). Evaluation of the LCAO Hartree-Fock-Slater method – Applications to transition-metal complexes. International Journal of Quantum Chemistry, 12, 169–190.
go back to reference Baerends, E. J., Ellis, D. E., & Ros, P. (1973). Self-consistent molecular Hartree-Fock-Slater calculations – I. The computational procedure. Chemical Physics, 2, 41–47.CrossRef Baerends, E. J., Ellis, D. E., & Ros, P. (1973). Self-consistent molecular Hartree-Fock-Slater calculations – I. The computational procedure. Chemical Physics, 2, 41–47.CrossRef
go back to reference Bartlett, R. J., Lotrich, V. F., & Schweigert, I. V. (2005). Ab initio density functional theory: The best of both worlds? Journal of Chemical Physics, 123, 062205.CrossRef Bartlett, R. J., Lotrich, V. F., & Schweigert, I. V. (2005). Ab initio density functional theory: The best of both worlds? Journal of Chemical Physics, 123, 062205.CrossRef
go back to reference Becke, A. D. (1988a). A multicenter numerical-integration scheme for polyaromic molecules. Journal of Chemical Physics, 88, 2547–2553.CrossRef Becke, A. D. (1988a). A multicenter numerical-integration scheme for polyaromic molecules. Journal of Chemical Physics, 88, 2547–2553.CrossRef
go back to reference Becke, A. D. (1988b). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38, 3098–3100.CrossRef Becke, A. D. (1988b). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38, 3098–3100.CrossRef
go back to reference Becke, A. D. (1993a). A new mixing of Hartree-Fock and local density-functional theories. The Journal of Physical Chemistry, 98, 1372–1377.CrossRef Becke, A. D. (1993a). A new mixing of Hartree-Fock and local density-functional theories. The Journal of Physical Chemistry, 98, 1372–1377.CrossRef
go back to reference Becke, A. D. (1993b). Density-functional thermochemistry: 3. The role of exact exchange. The Journal of Physical Chemistry, 98, 5648–5652.CrossRef Becke, A. D. (1993b). Density-functional thermochemistry: 3. The role of exact exchange. The Journal of Physical Chemistry, 98, 5648–5652.CrossRef
go back to reference Becke, A. D., & Roussel, M. R. (1989). Exchange holes in inhomogeneous systems – a coordinate-space model. Physical Review A, 98, 1372–1377. Becke, A. D., & Roussel, M. R. (1989). Exchange holes in inhomogeneous systems – a coordinate-space model. Physical Review A, 98, 1372–1377.
go back to reference Boerrigter, P. M., te Velde, G., & Baerends, E. J. (1988). 3-dimensional numerical-integtation for electronic-structure calculations. International Journal of Quantum Chemistry, 33, 87–113.CrossRef Boerrigter, P. M., te Velde, G., & Baerends, E. J. (1988). 3-dimensional numerical-integtation for electronic-structure calculations. International Journal of Quantum Chemistry, 33, 87–113.CrossRef
go back to reference Gill, P. M. W. (2001). Obituary: Density functional theory (1927–1993). Australian Journal of Chemistry, 54, 661–662.CrossRef Gill, P. M. W. (2001). Obituary: Density functional theory (1927–1993). Australian Journal of Chemistry, 54, 661–662.CrossRef
go back to reference Grimme, S. (2006). Seemingly simple stereoelectronic effects in alkane isomers and the implications for Kohn-Sham density functional theory. Angewandte Chemie International Edition, 45, 4460–4464.CrossRef Grimme, S. (2006). Seemingly simple stereoelectronic effects in alkane isomers and the implications for Kohn-Sham density functional theory. Angewandte Chemie International Edition, 45, 4460–4464.CrossRef
go back to reference Hertwig, R. H., & Koch, W. (1997). On the parameterization of the local correlation functional. What is Becke-3-LYP? Chemical Physics Letters, 268, 345–351.CrossRef Hertwig, R. H., & Koch, W. (1997). On the parameterization of the local correlation functional. What is Becke-3-LYP? Chemical Physics Letters, 268, 345–351.CrossRef
go back to reference Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physical Review, 136, B646–B871.CrossRef Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physical Review, 136, B646–B871.CrossRef
go back to reference Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical Review, 140, A1133–A1138.CrossRef Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical Review, 140, A1133–A1138.CrossRef
go back to reference Kurth, S., & Perdew, J. P. (2000). Role of the exchange-correlation energy: Nature’s glue. International Journal of Quantum Chemistry, 77, 814–818.CrossRef Kurth, S., & Perdew, J. P. (2000). Role of the exchange-correlation energy: Nature’s glue. International Journal of Quantum Chemistry, 77, 814–818.CrossRef
go back to reference Perdew, J. P. (1986). Density-functional approximation for the correlation-energy of the inhomogeneous electron gas. Physical Review B, 33, 8822–8824.CrossRef Perdew, J. P. (1986). Density-functional approximation for the correlation-energy of the inhomogeneous electron gas. Physical Review B, 33, 8822–8824.CrossRef
go back to reference Perdew, J. P., & Schmidt, K. (2001). Jacob’s ladder of density functional approximations for the exchange-correlation energy. In V. V. Doren, P. Geerlings, & C. V. Alsenoy (Eds.), Density functional theory and its applications to materials (pp. 1–20). Melville: AIP. Perdew, J. P., & Schmidt, K. (2001). Jacob’s ladder of density functional approximations for the exchange-correlation energy. In V. V. Doren, P. Geerlings, & C. V. Alsenoy (Eds.), Density functional theory and its applications to materials (pp. 1–20). Melville: AIP.
go back to reference Slater, J. C. (1951). A simplification of the Hartree-Fock method. Physcial Review, 81, 385–390.CrossRef Slater, J. C. (1951). A simplification of the Hartree-Fock method. Physcial Review, 81, 385–390.CrossRef
go back to reference Tao, J. M., Perdew, J. P., Staroverov, V. N., & Scuseria, G. E. (2003). Climbing the density functional ladder: Nonempirical meta-generalized gradient approximation designed for molecules and solids. Physical Review Letters, 91, 146401.CrossRef Tao, J. M., Perdew, J. P., Staroverov, V. N., & Scuseria, G. E. (2003). Climbing the density functional ladder: Nonempirical meta-generalized gradient approximation designed for molecules and solids. Physical Review Letters, 91, 146401.CrossRef
go back to reference Versluis, L., & Ziegler, T. (1988). The determination of molecular structures by density functional theory: The evaluation of analytical energy gradients by numerical integration. Journal of Chemical Physics, 88, 322–328.CrossRef Versluis, L., & Ziegler, T. (1988). The determination of molecular structures by density functional theory: The evaluation of analytical energy gradients by numerical integration. Journal of Chemical Physics, 88, 322–328.CrossRef
go back to reference Vosko, S. H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Canadian Journal of Physics, 58, 1200–1211.CrossRef Vosko, S. H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Canadian Journal of Physics, 58, 1200–1211.CrossRef
go back to reference Zope, R. R., & Dunlap, B. I. (2006). The limitations of Slater’s element-dependent exchange functional from analytic density-functional theory. Journal of Chemical Physics, 124, 044107.CrossRef Zope, R. R., & Dunlap, B. I. (2006). The limitations of Slater’s element-dependent exchange functional from analytic density-functional theory. Journal of Chemical Physics, 124, 044107.CrossRef
go back to reference Barden, C. J., Rienstra-Kiracofe, J. C., & Schaefer, H. F. (2000). Homonuclear 3d transition-metal diatomics: A systematic density functional theory study. Journal of Chemical Physics, 113, 690–700.CrossRef Barden, C. J., Rienstra-Kiracofe, J. C., & Schaefer, H. F. (2000). Homonuclear 3d transition-metal diatomics: A systematic density functional theory study. Journal of Chemical Physics, 113, 690–700.CrossRef
go back to reference Curtiss, L. A., Raghavachari, K., Redfern, P. C., & Pople, J. A. (1997). Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation. Journal of Chemical Physics, 106, 1063–1079.CrossRef Curtiss, L. A., Raghavachari, K., Redfern, P. C., & Pople, J. A. (1997). Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation. Journal of Chemical Physics, 106, 1063–1079.CrossRef
go back to reference Curtiss, L. A., Raghavachari, K., Redfern, P. C., & Pople, J. A. (2000). Assessment of Gaussian-3 and density functional theories for a larger experimental test set. Journal of Chemical Physics, 112, 7374–7383.CrossRef Curtiss, L. A., Raghavachari, K., Redfern, P. C., & Pople, J. A. (2000). Assessment of Gaussian-3 and density functional theories for a larger experimental test set. Journal of Chemical Physics, 112, 7374–7383.CrossRef
go back to reference Ghosh, A. (2006). Transition metal spin state energetics and noninnocent systems: Challenges for DFT in the bioinorganic arena. Journal of Biological Inorganic Chemistry, 11, 712–714.CrossRef Ghosh, A. (2006). Transition metal spin state energetics and noninnocent systems: Challenges for DFT in the bioinorganic arena. Journal of Biological Inorganic Chemistry, 11, 712–714.CrossRef
go back to reference Grimme, S. (2006). Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 27, 1787–1799.CrossRef Grimme, S. (2006). Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 27, 1787–1799.CrossRef
go back to reference Güell, M., Luis, J. M., Solá, M., & Swart, M. (2008). Importance of the basis set for the spin-state energetics of iron complexes. The Journal of Physical Chemistry A, 112, 6384–6391.CrossRef Güell, M., Luis, J. M., Solá, M., & Swart, M. (2008). Importance of the basis set for the spin-state energetics of iron complexes. The Journal of Physical Chemistry A, 112, 6384–6391.CrossRef
go back to reference Holland, J. P., & Green, J. C. (2010). Evaluation of exchange-correlation functionals for time-dependent density functional theory calculations on metal complexes. Journal of Computational Chemistry, 31, 1008–1014. Holland, J. P., & Green, J. C. (2010). Evaluation of exchange-correlation functionals for time-dependent density functional theory calculations on metal complexes. Journal of Computational Chemistry, 31, 1008–1014.
go back to reference Jacquemin, D., Perpete, E. A., Scuseria, G. E., Ciofini, I., & Adamo, C. (2008). TD-DFT performance for the visible absorption spectra of organic dyes: Conventional versus long-range hybrids. Journal of Chemical Theory and Computation, 4, 123–135.CrossRef Jacquemin, D., Perpete, E. A., Scuseria, G. E., Ciofini, I., & Adamo, C. (2008). TD-DFT performance for the visible absorption spectra of organic dyes: Conventional versus long-range hybrids. Journal of Chemical Theory and Computation, 4, 123–135.CrossRef
go back to reference Kelly, R. A., Clavier, H., Giudice, S., Scott, N. M., Stevens, E. D., Bordner, J., Samardjiev, I., Hoff, C. D., Cavallo, L., & Nolan, S. P. (2008). Determination of N-heterocyclic carbene (NHC) steric and electronic parameters using the [(NHC)Ir(CO)(2)Cl] system. Organometallics, 27, 202–210.CrossRef Kelly, R. A., Clavier, H., Giudice, S., Scott, N. M., Stevens, E. D., Bordner, J., Samardjiev, I., Hoff, C. D., Cavallo, L., & Nolan, S. P. (2008). Determination of N-heterocyclic carbene (NHC) steric and electronic parameters using the [(NHC)Ir(CO)(2)Cl] system. Organometallics, 27, 202–210.CrossRef
go back to reference Korth, M., & Grimme, S. (2009). “Mindless” DFT Benchmarking. Journal of Chemical Theory and Computation, 5, 993–1003.CrossRef Korth, M., & Grimme, S. (2009). “Mindless” DFT Benchmarking. Journal of Chemical Theory and Computation, 5, 993–1003.CrossRef
go back to reference Lynch, B. J., & Truhlar, D. G. (2003). Small representative benchmarks for thermochemical calculations. The Journal of Physical Chemistry A, 107, 8996–8999.CrossRef Lynch, B. J., & Truhlar, D. G. (2003). Small representative benchmarks for thermochemical calculations. The Journal of Physical Chemistry A, 107, 8996–8999.CrossRef
go back to reference Pierloot, K., & Vancoillie, S. J. (2008). Relative energy of the high-(T-5(2g)) and low-((1)A(1g)) spin states of the ferrous complexes [Fe(L)(NHS4)]: CASPT2 versus density functional theory. Journal of Chemical Physics, 128, 034104.CrossRef Pierloot, K., & Vancoillie, S. J. (2008). Relative energy of the high-(T-5(2g)) and low-((1)A(1g)) spin states of the ferrous complexes [Fe(L)(NHS4)]: CASPT2 versus density functional theory. Journal of Chemical Physics, 128, 034104.CrossRef
go back to reference Reiher, M., Salomon, O., & Hess, B. A. (2001). Reparameterization of hybrid functionals based on energy differences of states of different multiplicity. Theoretical Chemistry Accounts, 107, 48–55.CrossRef Reiher, M., Salomon, O., & Hess, B. A. (2001). Reparameterization of hybrid functionals based on energy differences of states of different multiplicity. Theoretical Chemistry Accounts, 107, 48–55.CrossRef
go back to reference Riley, K. E., Op’t Holt, B. T., & Merz, K. M., Jr., (2007). Critical assessment of the performance of density functional methods for several atomic and molecular properties. Journal of Chemical Theory and Computation, 3, 407–433.CrossRef Riley, K. E., Op’t Holt, B. T., & Merz, K. M., Jr., (2007). Critical assessment of the performance of density functional methods for several atomic and molecular properties. Journal of Chemical Theory and Computation, 3, 407–433.CrossRef
go back to reference Schultz, N. E., Zhao, Y., & Truhlar, D. G. (2005a). Density functionals for inorganometallic and organometallic chemistry. The Journal of Physical Chemistry A, 109, 11127–11143.CrossRef Schultz, N. E., Zhao, Y., & Truhlar, D. G. (2005a). Density functionals for inorganometallic and organometallic chemistry. The Journal of Physical Chemistry A, 109, 11127–11143.CrossRef
go back to reference Schultz, N. E., Zhao, Y., & Truhlar, D. G. (2005b). Databases for transition element bonding: Metal-metal bond energies and bond lengths and their use to test hybrid, hybrid meta, and meta density functionals and generalized gradient approximations. The Journal of Physical Chemistry A, 109, 4388–4403.CrossRef Schultz, N. E., Zhao, Y., & Truhlar, D. G. (2005b). Databases for transition element bonding: Metal-metal bond energies and bond lengths and their use to test hybrid, hybrid meta, and meta density functionals and generalized gradient approximations. The Journal of Physical Chemistry A, 109, 4388–4403.CrossRef
go back to reference Sorkin, A., Iron, M. A., & Truhlar, D. G. (2008). Density functional theory in transition-metal chemistry: Relative energies of low-lying states of iron compounds and the effect of spatial symmetry breaking. Journal of Chemical Theory and Computation, 4, 307–315.CrossRef Sorkin, A., Iron, M. A., & Truhlar, D. G. (2008). Density functional theory in transition-metal chemistry: Relative energies of low-lying states of iron compounds and the effect of spatial symmetry breaking. Journal of Chemical Theory and Computation, 4, 307–315.CrossRef
go back to reference Sponer, J., Jurecka, P., & Hobza, P. (2004). Accurate interaction energies of hydrogen-bonded nucleic acid base pairs. Journal of the American Chemical Society, 126, 10142–10151.CrossRef Sponer, J., Jurecka, P., & Hobza, P. (2004). Accurate interaction energies of hydrogen-bonded nucleic acid base pairs. Journal of the American Chemical Society, 126, 10142–10151.CrossRef
go back to reference Stevens, A. E., Feigerle, C. S., & Lineberger, W. C. (1982). Journal of the American Chemical Society, 104, 5026.CrossRef Stevens, A. E., Feigerle, C. S., & Lineberger, W. C. (1982). Journal of the American Chemical Society, 104, 5026.CrossRef
go back to reference Stowasser, R., & Hoffmann, R. (1999). What do the Kohn-Sham orbitals and eigenvalues mean? Journal of the American Chemical Society, 121, 3414–3420.CrossRef Stowasser, R., & Hoffmann, R. (1999). What do the Kohn-Sham orbitals and eigenvalues mean? Journal of the American Chemical Society, 121, 3414–3420.CrossRef
go back to reference Swart, M. (2008). Accurate spin-state energies for iron complexes. Journal of Chemical Theory and Computation, 4, 2057–2066.CrossRef Swart, M. (2008). Accurate spin-state energies for iron complexes. Journal of Chemical Theory and Computation, 4, 2057–2066.CrossRef
go back to reference Wang, N. X., & Wilson, A. K. (2004). The behavior of density functionals with respect to basis set. I. The correlation consistent basis sets. Journal of Chemical Physics, 121, 7632–7646.CrossRef Wang, N. X., & Wilson, A. K. (2004). The behavior of density functionals with respect to basis set. I. The correlation consistent basis sets. Journal of Chemical Physics, 121, 7632–7646.CrossRef
go back to reference Wodrich, M. D., Corminboeuf, C., & Schleyer, P. v. R. (2006). Systematic errors in computed alkane energies using B3LYP and other popular DFT functionals. Organic Letters, 8, 3631–3634.CrossRef Wodrich, M. D., Corminboeuf, C., & Schleyer, P. v. R. (2006). Systematic errors in computed alkane energies using B3LYP and other popular DFT functionals. Organic Letters, 8, 3631–3634.CrossRef
go back to reference Yang, W. T. (1991). Direct calculation of electron density in density functional theory. Physical Review Letters, 66, 1438–1441.CrossRef Yang, W. T. (1991). Direct calculation of electron density in density functional theory. Physical Review Letters, 66, 1438–1441.CrossRef
go back to reference Zhao, Y., & Truhlar, D. G. (2004). Hybrid meta density functional theory methods for thermochemistry, thermochemical kinetics, and noncovalent interactions: The MPW1B95 and MPWB1K models and comparative assessments for hydrogen bonding and van der Waals interactions. The Journal of Physical Chemistry A, 108, 6908–6918.CrossRef Zhao, Y., & Truhlar, D. G. (2004). Hybrid meta density functional theory methods for thermochemistry, thermochemical kinetics, and noncovalent interactions: The MPW1B95 and MPWB1K models and comparative assessments for hydrogen bonding and van der Waals interactions. The Journal of Physical Chemistry A, 108, 6908–6918.CrossRef
go back to reference Zhao, Y., & Truhlar, D. G. (2005a). Benchmark databases for nonbonded interactions and their use to test density functional theory. Journal of Chemical Theory and Computation, 1, 415–432.CrossRef Zhao, Y., & Truhlar, D. G. (2005a). Benchmark databases for nonbonded interactions and their use to test density functional theory. Journal of Chemical Theory and Computation, 1, 415–432.CrossRef
go back to reference Zhao, Y., & Truhlar, D. G. (2005b). Design of density functionals that are broadly accurate for thermochemistry, thermochemical kinetics, and nonbonded interactions. The Journal of Physical Chemistry A, 109, 5656–5667.CrossRef Zhao, Y., & Truhlar, D. G. (2005b). Design of density functionals that are broadly accurate for thermochemistry, thermochemical kinetics, and nonbonded interactions. The Journal of Physical Chemistry A, 109, 5656–5667.CrossRef
go back to reference Zhao, Y., & Truhlar, D. G. (2005c). How well can new-generation density functional methods describe stacking interactions in biological systems? Physical Chemistry Chemical Physics, 7, 2701–2705.CrossRef Zhao, Y., & Truhlar, D. G. (2005c). How well can new-generation density functional methods describe stacking interactions in biological systems? Physical Chemistry Chemical Physics, 7, 2701–2705.CrossRef
go back to reference Zhao, Y., & Truhlar, D. G. (2008). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts, 120, 215–241.CrossRef Zhao, Y., & Truhlar, D. G. (2008). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts, 120, 215–241.CrossRef
go back to reference Zhao, Y., Pu, J., Lynch, B. J., & Truhlar, D. G. (2004). Tests of second-generation and third-generation density functionals for thermochemical kinetics. Physical Chemistry Chemical Physics, 6, 673–676.CrossRef Zhao, Y., Pu, J., Lynch, B. J., & Truhlar, D. G. (2004). Tests of second-generation and third-generation density functionals for thermochemical kinetics. Physical Chemistry Chemical Physics, 6, 673–676.CrossRef
go back to reference Zhao, Y., Gonzalez-Garcia, N., & Truhlar, D. G. (2005). Benchmark database of barrier heights for heavy atom transfer, nucleophilic substitution, association, and unimolecular reactions and its use to test theoretical methods. The Journal of Physical Chemistry A, 109, 2012–2018.CrossRef Zhao, Y., Gonzalez-Garcia, N., & Truhlar, D. G. (2005). Benchmark database of barrier heights for heavy atom transfer, nucleophilic substitution, association, and unimolecular reactions and its use to test theoretical methods. The Journal of Physical Chemistry A, 109, 2012–2018.CrossRef
go back to reference Zhao, Y., Schultz, N. E., & Truhlar, D. G. (2006). Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. Journal of Chemical Theory and Computation, 2, 364–382.CrossRef Zhao, Y., Schultz, N. E., & Truhlar, D. G. (2006). Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. Journal of Chemical Theory and Computation, 2, 364–382.CrossRef
go back to reference Zhou, M., Andrews, L., & Bauschlicher, C. (2001). Spectroscopic and theoretical investigations of vibrational frequencies in binary unsaturated transition-metal carbonyl cations, neutrals, and anions. Chemical Reviews, 101, 1931–1961.CrossRef Zhou, M., Andrews, L., & Bauschlicher, C. (2001). Spectroscopic and theoretical investigations of vibrational frequencies in binary unsaturated transition-metal carbonyl cations, neutrals, and anions. Chemical Reviews, 101, 1931–1961.CrossRef
go back to reference Baerends, E. J., & Gritsenko, O. V. (1997). A quantum chemical view of density functional theory. The Journal of Physical Chemistry A, 101, 5383–5403.CrossRef Baerends, E. J., & Gritsenko, O. V. (1997). A quantum chemical view of density functional theory. The Journal of Physical Chemistry A, 101, 5383–5403.CrossRef
go back to reference Cramer, C. J., & Truhlar, D. G. (2009). Density functional theory for transition metals and transition metal chemistry. Physical Chemistry Chemical Physics, 11, 10757–10816.CrossRef Cramer, C. J., & Truhlar, D. G. (2009). Density functional theory for transition metals and transition metal chemistry. Physical Chemistry Chemical Physics, 11, 10757–10816.CrossRef
go back to reference Geerlings, P., De Proft, F., & Langenaeker, L. (2003). Conceptual density functional theory. Chemical Review, 103, 1793–1873.CrossRef Geerlings, P., De Proft, F., & Langenaeker, L. (2003). Conceptual density functional theory. Chemical Review, 103, 1793–1873.CrossRef
go back to reference Kohn, W., Becke, A. D., and Parr, R. G. (1996). Density functional theory of electronic structure. The Journal of Physical Chemistry, 100, 12974–12980.CrossRef Kohn, W., Becke, A. D., and Parr, R. G. (1996). Density functional theory of electronic structure. The Journal of Physical Chemistry, 100, 12974–12980.CrossRef
go back to reference Lewis, K. E., Golden, D. M., & Smith, G. P. (1984). Journal of the American Chemical Society, 106, 3905.CrossRef Lewis, K. E., Golden, D. M., & Smith, G. P. (1984). Journal of the American Chemical Society, 106, 3905.CrossRef
go back to reference Neese, F. (2009). Prediction of molecular properties and molecular spectroscopy with density functional theory: From fundamental theory to exchange-coupling. Coordination Chemistry Reviews, 253, 526–563.CrossRef Neese, F. (2009). Prediction of molecular properties and molecular spectroscopy with density functional theory: From fundamental theory to exchange-coupling. Coordination Chemistry Reviews, 253, 526–563.CrossRef
go back to reference Perdew, J. P., Ruzsinszky, A., Constantin, L. A., Sun, J. W., & Csonka, G. I. (2009). Some fundamental issues in ground-state density functional theory: A guide for the perplexed. Journal of Chemical Theory and Computation, 5, 902–908.CrossRef Perdew, J. P., Ruzsinszky, A., Constantin, L. A., Sun, J. W., & Csonka, G. I. (2009). Some fundamental issues in ground-state density functional theory: A guide for the perplexed. Journal of Chemical Theory and Computation, 5, 902–908.CrossRef
go back to reference Sousa, S. F., Fernandes, P. A., & Ramos, M. J. (2007). General performance of density functionals. The Journal of Physical Chemistry A, 111, 10439–10452.CrossRef Sousa, S. F., Fernandes, P. A., & Ramos, M. J. (2007). General performance of density functionals. The Journal of Physical Chemistry A, 111, 10439–10452.CrossRef
go back to reference Zhao, Y., & Truhlar, D. G. (2008). Density functionals with broad applicability in chemistry. Accounts of Chemical Research, 41, 157–167.CrossRef Zhao, Y., & Truhlar, D. G. (2008). Density functionals with broad applicability in chemistry. Accounts of Chemical Research, 41, 157–167.CrossRef
go back to reference Ziegler, T. (1991). Approximate density functional theory as practical tool in molecular energetics and dynamics. Chemical Review, 91, 651–667.CrossRef Ziegler, T. (1991). Approximate density functional theory as practical tool in molecular energetics and dynamics. Chemical Review, 91, 651–667.CrossRef
go back to reference Ziegler, T. (1995). Density functional theory as practical tool in studies of organometallic energetics and kinetics. Beating the heavy metal blues with DFT. Canadian Journal of Chemistry, 73, 743–761.CrossRef Ziegler, T. (1995). Density functional theory as practical tool in studies of organometallic energetics and kinetics. Beating the heavy metal blues with DFT. Canadian Journal of Chemistry, 73, 743–761.CrossRef
Metadata
Title
Directions for Use of Density Functional Theory: A Short Instruction Manual for Chemists
Authors
Heiko Jacobsen
Luigi Cavallo
Copyright Year
2012
Publisher
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-0711-5_4

Premium Partner