Skip to main content
Top
Published in: Quantum Information Processing 1/2024

01-01-2024

Discrete-time quantum walk-based optimization algorithm

Authors: Ioannis Liliopoulos, Georgios D. Varsamis, Ioannis G. Karafyllidis

Published in: Quantum Information Processing | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Optimization is a collection of principles that are used for problem solving in a vast spectrum of disciplines. Given the specifics of a problem and a set of constraints, the objective is to find a collection of variables that minimize or maximize an objective function. We developed a novel quantum optimization algorithm based on discrete-time quantum walks that evolve under the effect of external potentials. Each discrete lattice site corresponds to a value of the objective function’s domain of definition. The objective function is expressed as the external potential that affects the quantum walks evolution. The quantum walker is able to find the global minimum by utilizing quantum superposition of the potential affected lattice sites where the evolution occurs. We tested its performance considering two use cases. First, we designed a neural network for binary classification, where we utilized the quantum walk-based optimizer to update the neurons’ weights. We compared the results with the ones of a classical optimizer, i.e., stochastic gradient descent, on four different datasets. The quantum walks-based optimization algorithm showed the ability to match the performance of the classical counterpart using less training steps, and in some cases, it was able to find near optimal weights in only one training iteration. Finally, we considered the case of hyperparameter fine-tuning where, the quantum walk-based optimizer was used to optimize the parameters of a classical machine learning model, to increase its accuracy.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Schuld, M., Petruccione, F.: Supervised Learning with Quantum Computers. Springer (2018)CrossRef Schuld, M., Petruccione, F.: Supervised Learning with Quantum Computers. Springer (2018)CrossRef
3.
go back to reference Mitarai, K., Negoro, M., Kitagawa, M., Fujii, K.: Quantum circuit learning. Phys. Rev. A 98, 032309 (2018)ADSCrossRef Mitarai, K., Negoro, M., Kitagawa, M., Fujii, K.: Quantum circuit learning. Phys. Rev. A 98, 032309 (2018)ADSCrossRef
4.
go back to reference Li, Y., Tian, M., Liu, G., Peng, C., Jiao, L.: Quantum optimization and quantum learning: a survey. IEEE Access 8, 23568–23593 (2020)CrossRef Li, Y., Tian, M., Liu, G., Peng, C., Jiao, L.: Quantum optimization and quantum learning: a survey. IEEE Access 8, 23568–23593 (2020)CrossRef
7.
go back to reference Havlicek, V., et al.: Supervised learning with quantum enhanced feature spaces. Nature 567, 209–212 (2019)ADSCrossRef Havlicek, V., et al.: Supervised learning with quantum enhanced feature spaces. Nature 567, 209–212 (2019)ADSCrossRef
8.
go back to reference Park, D.K., Blank, C., Petruccione, F.: The theory of the quantum kernel-based binary classifier. Phys. Lett. A 384, 126422 (2020)MathSciNetCrossRef Park, D.K., Blank, C., Petruccione, F.: The theory of the quantum kernel-based binary classifier. Phys. Lett. A 384, 126422 (2020)MathSciNetCrossRef
9.
go back to reference Jäger, J., Krems, R.V.: Universal expressiveness of variational quantum classifiers and quantum kernels for support vector machines. Nat. Commun. 14, 576 (2023)ADSCrossRef Jäger, J., Krems, R.V.: Universal expressiveness of variational quantum classifiers and quantum kernels for support vector machines. Nat. Commun. 14, 576 (2023)ADSCrossRef
11.
go back to reference Wan, K.H., Dahlsten, O., Kristjánsson, H., Gardner, R., Kim, M.S.: Quantum generalisation of feedforward neural networks. npj Quantum Inf 3, 36 (2017)ADSCrossRef Wan, K.H., Dahlsten, O., Kristjánsson, H., Gardner, R., Kim, M.S.: Quantum generalisation of feedforward neural networks. npj Quantum Inf 3, 36 (2017)ADSCrossRef
13.
go back to reference Powell, M.J.D.: A direct search optimization method that models the objective and constraint functions by linear interpolation. In: Gomez, S., Hennart, J.-P. (eds.) Advances in Optimization and Numerical Analysis, pp. 51–67. Springer (1994)CrossRef Powell, M.J.D.: A direct search optimization method that models the objective and constraint functions by linear interpolation. In: Gomez, S., Hennart, J.-P. (eds.) Advances in Optimization and Numerical Analysis, pp. 51–67. Springer (1994)CrossRef
16.
go back to reference Gilliam, A., Woerner, S., Gonciulea, C.: Grover adaptive search for constrained polynomial binary optimization. Quantum 5, 428 (2021)CrossRef Gilliam, A., Woerner, S., Gonciulea, C.: Grover adaptive search for constrained polynomial binary optimization. Quantum 5, 428 (2021)CrossRef
17.
go back to reference Varsamis, G.D., Karafyllidis, I.G.: Computing the lowest eigenstate of tight-binding Hamiltonians using quantum walks. Int. J. Quantum Inform. 20, 2250012 (2022)ADSMathSciNetCrossRef Varsamis, G.D., Karafyllidis, I.G.: Computing the lowest eigenstate of tight-binding Hamiltonians using quantum walks. Int. J. Quantum Inform. 20, 2250012 (2022)ADSMathSciNetCrossRef
18.
go back to reference Varsamis, G.D., Karafyllidis, I.G., Sirakoulis, GCh.: Hitting times of quantum and classical random walks in potential spaces. Physica A 606, 128119 (2022)MathSciNetCrossRef Varsamis, G.D., Karafyllidis, I.G., Sirakoulis, GCh.: Hitting times of quantum and classical random walks in potential spaces. Physica A 606, 128119 (2022)MathSciNetCrossRef
19.
go back to reference Varsamis, G.D., Karafyllidis, I.G., Sirakoulis, GCh.: Quantum walks in spaces with applied potentials. Eur. Phys. J. Plus 138, 312 (2023)CrossRef Varsamis, G.D., Karafyllidis, I.G., Sirakoulis, GCh.: Quantum walks in spaces with applied potentials. Eur. Phys. J. Plus 138, 312 (2023)CrossRef
21.
go back to reference Singh, S., Chawla, P., Sarkar, A., Chandrashekar, C.M.: Universal quantum computing using single-particle discrete-time quantum walk. Sci. Rep. 11, 11551 (2021)ADSCrossRef Singh, S., Chawla, P., Sarkar, A., Chandrashekar, C.M.: Universal quantum computing using single-particle discrete-time quantum walk. Sci. Rep. 11, 11551 (2021)ADSCrossRef
22.
go back to reference Lovett, N.B., Cooper, S., Everitt, M., Trevers, M., Kendon, V.: Universal quantum computation using the discrete-time quantum walk. Phys. Rev. A 81, 042330 (2010)ADSMathSciNetCrossRef Lovett, N.B., Cooper, S., Everitt, M., Trevers, M., Kendon, V.: Universal quantum computation using the discrete-time quantum walk. Phys. Rev. A 81, 042330 (2010)ADSMathSciNetCrossRef
23.
go back to reference Manouchehri, K., Wang, J.: Physical Implementation of Quantum Walks. Springer, Berlin (2014)CrossRef Manouchehri, K., Wang, J.: Physical Implementation of Quantum Walks. Springer, Berlin (2014)CrossRef
24.
25.
go back to reference Karafyllidis, I.G.: Definition and evolution of quantum cellular automata with two qubits per cell. Phys. Rev. A 70, 044301 (2004)ADSCrossRef Karafyllidis, I.G.: Definition and evolution of quantum cellular automata with two qubits per cell. Phys. Rev. A 70, 044301 (2004)ADSCrossRef
26.
go back to reference Huerta Alderete, C., et al.: Quantum walks and Dirac cellular automata on a programmable trapped-ion quantum computer. Nat. Commun. 11, 3720 (2020)ADSCrossRef Huerta Alderete, C., et al.: Quantum walks and Dirac cellular automata on a programmable trapped-ion quantum computer. Nat. Commun. 11, 3720 (2020)ADSCrossRef
27.
go back to reference Loke, T., Wang, J.B.: Efficient circuit implementation of quantum walks on non-degree-regular graphs. Phys. Rev. A 86, 042338 (2012)ADSCrossRef Loke, T., Wang, J.B.: Efficient circuit implementation of quantum walks on non-degree-regular graphs. Phys. Rev. A 86, 042338 (2012)ADSCrossRef
28.
go back to reference Douglas, B.L., Wang, J.B.: Efficient quantum circuit implementation of quantum walks. Phys. Rev. A 79, 052335 (2009)ADSCrossRef Douglas, B.L., Wang, J.B.: Efficient quantum circuit implementation of quantum walks. Phys. Rev. A 79, 052335 (2009)ADSCrossRef
29.
go back to reference Acasiete, F., Agostini, F.P., Moqadam, J.K., Portugal, R.: Implementation of quantum walks on IBM quantum computers. Quantum Inf. Process. 19, 426 (2020)ADSMathSciNetCrossRef Acasiete, F., Agostini, F.P., Moqadam, J.K., Portugal, R.: Implementation of quantum walks on IBM quantum computers. Quantum Inf. Process. 19, 426 (2020)ADSMathSciNetCrossRef
30.
go back to reference Liu, Y., Su, W.J., Li, T.: On quantum speedups for nonconvex optimization via quantum tunneling walks. Quantum 7, 1030 (2023)CrossRef Liu, Y., Su, W.J., Li, T.: On quantum speedups for nonconvex optimization via quantum tunneling walks. Quantum 7, 1030 (2023)CrossRef
32.
go back to reference Chui, C.K., Li, X.: Approximation by ridge functions and neural networks with one hidden layer. J. Approx. Theory 70, 131–141 (1992)ADSMathSciNetCrossRef Chui, C.K., Li, X.: Approximation by ridge functions and neural networks with one hidden layer. J. Approx. Theory 70, 131–141 (1992)ADSMathSciNetCrossRef
Metadata
Title
Discrete-time quantum walk-based optimization algorithm
Authors
Ioannis Liliopoulos
Georgios D. Varsamis
Ioannis G. Karafyllidis
Publication date
01-01-2024
Publisher
Springer US
Published in
Quantum Information Processing / Issue 1/2024
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-023-04234-4

Other articles of this Issue 1/2024

Quantum Information Processing 1/2024 Go to the issue