Skip to main content
Top

2022 | OriginalPaper | Chapter

3. Discrimination of Mobile Supramolecular Chirality: Kinetic Resolution of Mechanically Planar Chiral Rotaxanes by Organocatalysis

Author : Dr. Ayumi Imayoshi

Published in: Discrimination of Mobile Supramolecular Chirality

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Among the fields of asymmetric synthesis approaching the mature science, asymmetric discrimination and catalytic synthesis of chiral supramolecules still stand as unsolved problems. Supramolecules such as rotaxanes and catenanes are known to possess mechanical chirality when each of the axis and/or ring components has dissymmetry (Fig. 3.1) (Frisch and Wasserman in J Am Chem Soc 83:3789–3795, 1961, [1]; Schill in Catenanes, rotaxanes and knots, Academic Press, New York, 1971, [2]). The extreme difficulty in asymmetric synthesis of such supramolecules may be resulting from conformational diversity and movability of mechanically chiral supramolecules. I have achieved the first example of highly enantioselective synthesis of mechanically planar chiral rotaxanes by acylative kinetic resolution of the racemate. In the presence of catalyst 1c, an acylative kinetic resolution of a racemic rotaxane 10 afforded a mechanically planar chiral rotaxane 10 with perfect enantiopurity (>99% ee) in 29% yield (the theoretical maximum yield of kinetic resolution of racemate is 50%) (Fig. 3.2). The catalysts enabled to discriminate mobile mechanical chirality of the rotaxanes with the excellent selectivity in up to 16.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Frisch HL, Wasserman E (1961) Chemical topology. J Am Chem Soc 83:3789–3795CrossRef Frisch HL, Wasserman E (1961) Chemical topology. J Am Chem Soc 83:3789–3795CrossRef
2.
go back to reference Schill G (1971) Catenanes, rotaxanes and knots. Academic Press, New York Schill G (1971) Catenanes, rotaxanes and knots. Academic Press, New York
3.
go back to reference Theil A, Mauve C, Adeline MT, Marinetti A, Sauvage JP (2006) Phosphorus-containing [2]Catenanes as an example of interlocking chiral structures. Angew Chem Int Edn 45:2104–2107CrossRef Theil A, Mauve C, Adeline MT, Marinetti A, Sauvage JP (2006) Phosphorus-containing [2]Catenanes as an example of interlocking chiral structures. Angew Chem Int Edn 45:2104–2107CrossRef
4.
go back to reference Alvarez-Perez M, Goldup SM, Leigh DA, Slawin AMZ (2008) A chemically-driven molecular information ratchet. J Am Chem Soc 130:1836–1838CrossRef Alvarez-Perez M, Goldup SM, Leigh DA, Slawin AMZ (2008) A chemically-driven molecular information ratchet. J Am Chem Soc 130:1836–1838CrossRef
5.
go back to reference Tachibana Y, Kihara N, Takata T (2004) Asymmetric benzoin condensation catalyzed by chiral rotaxanes tethering a thiazolium salt moiety via the cooperation of the component: can rotaxane be an effective reaction field? J Am Chem Soc 126:3438–3439CrossRef Tachibana Y, Kihara N, Takata T (2004) Asymmetric benzoin condensation catalyzed by chiral rotaxanes tethering a thiazolium salt moiety via the cooperation of the component: can rotaxane be an effective reaction field? J Am Chem Soc 126:3438–3439CrossRef
6.
go back to reference Hattori G, Hori T, Miyake Y, Nishibayashi Y (2007) Design and preparation of a chiral ligand based on a pseudorotaxane skeleton: application to rhodium-catalyzed enantioselective hydrogenation of enamides. J Am Chem Soc 129:12930–12931CrossRef Hattori G, Hori T, Miyake Y, Nishibayashi Y (2007) Design and preparation of a chiral ligand based on a pseudorotaxane skeleton: application to rhodium-catalyzed enantioselective hydrogenation of enamides. J Am Chem Soc 129:12930–12931CrossRef
7.
go back to reference Okada Y, Miao ZH, Akiba M, Nishimura J (2006) Synthesis and characterization of chiral catenanes based on rigid Calix[4]Arene. Tetrahedron Lett 47:2699–2702CrossRef Okada Y, Miao ZH, Akiba M, Nishimura J (2006) Synthesis and characterization of chiral catenanes based on rigid Calix[4]Arene. Tetrahedron Lett 47:2699–2702CrossRef
8.
go back to reference Mobian P, Banerji N, Bernardinelli G, Lacour J (2006) Towards the stereoselective synthesis of inherently chiral pseudorotaxanes. Org Biomol Chem 4:224–231CrossRef Mobian P, Banerji N, Bernardinelli G, Lacour J (2006) Towards the stereoselective synthesis of inherently chiral pseudorotaxanes. Org Biomol Chem 4:224–231CrossRef
9.
go back to reference Kaida Y, Okamoto Y, Chambron J-C, Mitchell DK, Sauvage J-P (1993) The Separation of optically active copper (I) catenates. Tetrahedron Lett 34:1019–1022CrossRef Kaida Y, Okamoto Y, Chambron J-C, Mitchell DK, Sauvage J-P (1993) The Separation of optically active copper (I) catenates. Tetrahedron Lett 34:1019–1022CrossRef
10.
go back to reference Yamamoto C, Okamoto Y, Schmidt T, Jager R, Vogtle F (1997) Enantiomeric resolution of cycloenantiomeric rotaxane, topologically chiral catenane, and pretzel-shaped molecules: observation of pronounced circular dichroism. J Am Chem Soc 119:10547–10548CrossRef Yamamoto C, Okamoto Y, Schmidt T, Jager R, Vogtle F (1997) Enantiomeric resolution of cycloenantiomeric rotaxane, topologically chiral catenane, and pretzel-shaped molecules: observation of pronounced circular dichroism. J Am Chem Soc 119:10547–10548CrossRef
11.
go back to reference Schmieder R, Hubner G, Seel C, Vogtle F (1999) The first cyclodiasteromeric [3]rotaxane. Angew Chem Int Edn 38:3528–3530CrossRef Schmieder R, Hubner G, Seel C, Vogtle F (1999) The first cyclodiasteromeric [3]rotaxane. Angew Chem Int Edn 38:3528–3530CrossRef
12.
go back to reference Bordoli RJ, Goldup SM (2014) An efficient approach to mechanically planar chiral rotaxanes. J Am Chem Soc 136:4817–4820CrossRef Bordoli RJ, Goldup SM (2014) An efficient approach to mechanically planar chiral rotaxanes. J Am Chem Soc 136:4817–4820CrossRef
13.
go back to reference Jinks MA, de Juan A, Denis M, Fletcher CJ, Galli M, Jamieson EMG, Modicom F, Zhang Z, Goldup SM (2018) Stereoselective synthesis of mechanically planar rotaxanes. Angew Chem Int Edn 57:14806–14810 Jinks MA, de Juan A, Denis M, Fletcher CJ, Galli M, Jamieson EMG, Modicom F, Zhang Z, Goldup SM (2018) Stereoselective synthesis of mechanically planar rotaxanes. Angew Chem Int Edn 57:14806–14810
14.
go back to reference Denis M, Lewis JEM, Modicom F, Goldup SM (2019) An auxiliary approach for the stereoselective synthesis of topologically chiral catenanes. Chem 5:1512–1520CrossRef Denis M, Lewis JEM, Modicom F, Goldup SM (2019) An auxiliary approach for the stereoselective synthesis of topologically chiral catenanes. Chem 5:1512–1520CrossRef
15.
go back to reference Tian C, Fielden SDP, Pérez-Saavedra B, Vitorica-Yrezabal IJ, Leigh AD (2020) Single-step enantioselective synthesis of mechanically planar chiral [2]rotaxanes using a chiral leaving group strategy. J Am Chem Soc 142:9803–9808CrossRef Tian C, Fielden SDP, Pérez-Saavedra B, Vitorica-Yrezabal IJ, Leigh AD (2020) Single-step enantioselective synthesis of mechanically planar chiral [2]rotaxanes using a chiral leaving group strategy. J Am Chem Soc 142:9803–9808CrossRef
16.
go back to reference Makita Y, Kihara N, Nakakoji N, Takata T, Inagaki S, Yamamoto C, Okamoto Y (2007) Catalytic asymmetric synthesis and optical resolution of planar chiral rotaxane. Chem Lett 36:162–163CrossRef Makita Y, Kihara N, Nakakoji N, Takata T, Inagaki S, Yamamoto C, Okamoto Y (2007) Catalytic asymmetric synthesis and optical resolution of planar chiral rotaxane. Chem Lett 36:162–163CrossRef
17.
go back to reference Maynard JR-J, Goldup SM (2020) Strategies for the synthesis of enantiopure mechanically chiral molecules. Chem 6:1914–1932 Maynard JR-J, Goldup SM (2020) Strategies for the synthesis of enantiopure mechanically chiral molecules. Chem 6:1914–1932
18.
go back to reference Yoshida K, Shigeta T, Furuta T, Kawabata T (2012) Catalyst-controlled reversal of chemoselectivity in acylation of 2-aminopentane-1,5-diol derivatives. Chem Commun 48:6981–6983CrossRef Yoshida K, Shigeta T, Furuta T, Kawabata T (2012) Catalyst-controlled reversal of chemoselectivity in acylation of 2-aminopentane-1,5-diol derivatives. Chem Commun 48:6981–6983CrossRef
19.
go back to reference Yoshida K, Mishiro K, Ueda Y, Shigeta T, Furuta T, Kawabata T (2012) Non-enzymatic geometry-selective acylation of tri- and tetrasubstituted α, α′-alkenediols. Adv Synth Catal 354:3291–3298CrossRef Yoshida K, Mishiro K, Ueda Y, Shigeta T, Furuta T, Kawabata T (2012) Non-enzymatic geometry-selective acylation of tri- and tetrasubstituted α, α′-alkenediols. Adv Synth Catal 354:3291–3298CrossRef
20.
go back to reference Yamanaka M, Yoshida U, Sato M, Shigeta T, Yoshida K, Furuta T, Kawabata T (2015) Origin of high E-selectivity in 4-pyrrolidinopyridine-catalyzed tetrasubstituted α, α′-alkenediols: a computational and experimental study. J Org Chem 80:3075–3082CrossRef Yamanaka M, Yoshida U, Sato M, Shigeta T, Yoshida K, Furuta T, Kawabata T (2015) Origin of high E-selectivity in 4-pyrrolidinopyridine-catalyzed tetrasubstituted α, α′-alkenediols: a computational and experimental study. J Org Chem 80:3075–3082CrossRef
21.
go back to reference Imayoshi A, Yamanaka M, Sato M, Yoshida K, Furuta T, Ueda Y, Kawabata T (2016) Insights into the molecular recognition process in organocatalytic chemoselective monoacylation of 1,5-pentanediol. Adv Synth Catal 358:1337–1344CrossRef Imayoshi A, Yamanaka M, Sato M, Yoshida K, Furuta T, Ueda Y, Kawabata T (2016) Insights into the molecular recognition process in organocatalytic chemoselective monoacylation of 1,5-pentanediol. Adv Synth Catal 358:1337–1344CrossRef
22.
go back to reference Tachibana Y, Kawasaki H, Kihara N, Takata T (2006) Sequential O- and N-acylation protocol for high-yield preparation and modification of rotaxanes: synthesis, functionalization, structure, and intercomponent interaction of rotaxanes. J Org Chem 71:5093–5104CrossRef Tachibana Y, Kawasaki H, Kihara N, Takata T (2006) Sequential O- and N-acylation protocol for high-yield preparation and modification of rotaxanes: synthesis, functionalization, structure, and intercomponent interaction of rotaxanes. J Org Chem 71:5093–5104CrossRef
23.
go back to reference Keith JM, Larrow JF, Jacobsen EN (2001) Practical considerations in kinetic resolution reactions. Adv Synth Catal 343:5–26CrossRef Keith JM, Larrow JF, Jacobsen EN (2001) Practical considerations in kinetic resolution reactions. Adv Synth Catal 343:5–26CrossRef
24.
go back to reference Vedejs E, Jure M (2005) Efficiency in nonenzymatic kinetic resolution. Angew Chem Int Edn 44:3974–4001CrossRef Vedejs E, Jure M (2005) Efficiency in nonenzymatic kinetic resolution. Angew Chem Int Edn 44:3974–4001CrossRef
25.
go back to reference Birman VB, Li XM (2006) Benzotetramisole: a remarkably enantioselective acyl transfer catalyst. Org Lett 8:1351–1354CrossRef Birman VB, Li XM (2006) Benzotetramisole: a remarkably enantioselective acyl transfer catalyst. Org Lett 8:1351–1354CrossRef
26.
go back to reference List B (ed) (2012) Science of synthesis, asymmetric organocatalysis 1, Lewis Base and Acid Catalysts. Thieme, Stuttgart, New York List B (ed) (2012) Science of synthesis, asymmetric organocatalysis 1, Lewis Base and Acid Catalysts. Thieme, Stuttgart, New York
27.
go back to reference Kawabata T, Muramatsu W, Nishio T, Shibata T, Schedel H (2007) A catalytic one-step process for the chemo- and regioselective acylation of monosaccharides. J Am Chem Soc 129:12890–12895CrossRef Kawabata T, Muramatsu W, Nishio T, Shibata T, Schedel H (2007) A catalytic one-step process for the chemo- and regioselective acylation of monosaccharides. J Am Chem Soc 129:12890–12895CrossRef
Metadata
Title
Discrimination of Mobile Supramolecular Chirality: Kinetic Resolution of Mechanically Planar Chiral Rotaxanes by Organocatalysis
Author
Dr. Ayumi Imayoshi
Copyright Year
2022
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-16-7431-0_3

Premium Partners