Skip to main content
Top

2020 | OriginalPaper | Chapter

16. Distributed Control of Microgrids

Authors : Ahmet Karaarslan, M. Emrah Seker

Published in: Microgrid Architectures, Control and Protection Methods

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The aim of this chapter discusses the relationship between hierarchical control and review of distributed control systems that is used in microgrids. The microgrids are differs from the conventional power systems. Because of the widespread use of advanced control technologies with features such as power electronics devices, detection/measurement applications, and communication infrastructures. These features of microgrids make it easier for renewable energy sources that are included in the power systems. Therefore, distributed control methods are applied in addition to centralized and de-centralized controls for reliable operation of the system in microgrids and between different microgrids. This section discusses the features of these methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference C. Sao, P. Lehn, Autonomous load sharing of voltage source converters. IEEE Trans. Power Del. 20(2), 1009–1016 (2005)CrossRef C. Sao, P. Lehn, Autonomous load sharing of voltage source converters. IEEE Trans. Power Del. 20(2), 1009–1016 (2005)CrossRef
2.
go back to reference M.C. Chandorkar, D.M. Divan, R. Adapa, Control of parallel connected inverters in standalone AC supply systems. IEEE Trans. Ind. Appl. 29(1), 136–143 (1993)CrossRef M.C. Chandorkar, D.M. Divan, R. Adapa, Control of parallel connected inverters in standalone AC supply systems. IEEE Trans. Ind. Appl. 29(1), 136–143 (1993)CrossRef
3.
go back to reference C.L. DeMarco, C.A. Baone, Y. Han, B. Lesieutre, Primary and secondary control for high penetration renewables. Future Grid Initiative White Paper (2012) C.L. DeMarco, C.A. Baone, Y. Han, B. Lesieutre, Primary and secondary control for high penetration renewables. Future Grid Initiative White Paper (2012)
4.
go back to reference Y.A.R.I. Mohamed, E. El Saadany, Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation microgrids. IEEE Trans. Power Electron. 23(6), 2806–2816 (2008)CrossRef Y.A.R.I. Mohamed, E. El Saadany, Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation microgrids. IEEE Trans. Power Electron. 23(6), 2806–2816 (2008)CrossRef
5.
go back to reference K. Tan, P. So, Y. Chu, M. Chen, Coordinated control and energy management of distributed generation inverters in a microgrid. IEEE Trans. Power Del. 28(2), 704–713 (2013)CrossRef K. Tan, P. So, Y. Chu, M. Chen, Coordinated control and energy management of distributed generation inverters in a microgrid. IEEE Trans. Power Del. 28(2), 704–713 (2013)CrossRef
6.
go back to reference J. Guerrero, L. Garcia de Vicuna, J. Matas, M. Castilla, J. Miret, Output impedance design of parallel-connected ups inverters with wireless load-sharing control. IEEE Trans. Ind. Electron. 52(4), 1126–1135 (2005)CrossRef J. Guerrero, L. Garcia de Vicuna, J. Matas, M. Castilla, J. Miret, Output impedance design of parallel-connected ups inverters with wireless load-sharing control. IEEE Trans. Ind. Electron. 52(4), 1126–1135 (2005)CrossRef
7.
go back to reference N. Hatziargyriou, H. Asona, R. Iravani, C. Marnay, Microgrids. IEEE Power Energy Mag. 5(4), 78–94 (2007) N. Hatziargyriou, H. Asona, R. Iravani, C. Marnay, Microgrids. IEEE Power Energy Mag. 5(4), 78–94 (2007)
8.
go back to reference H. Karimi, H. Nikkhajoei, M.R. Iravani, Control of an electronically-coupled distributed resource unit subsequent to an islanding event. IEEE Trans. Power Del. 23(1), 493–501 (2008)CrossRef H. Karimi, H. Nikkhajoei, M.R. Iravani, Control of an electronically-coupled distributed resource unit subsequent to an islanding event. IEEE Trans. Power Del. 23(1), 493–501 (2008)CrossRef
9.
go back to reference X. Sun, L.K. Wong, Y.S. Lee, D. Xu, Design and analysis of an optimal controller for parallel multi-inverter systems. IEEE Trans. Circuits Syst. II, Exp. Briefs 53(1), 56–61 (2006)CrossRef X. Sun, L.K. Wong, Y.S. Lee, D. Xu, Design and analysis of an optimal controller for parallel multi-inverter systems. IEEE Trans. Circuits Syst. II, Exp. Briefs 53(1), 56–61 (2006)CrossRef
10.
go back to reference J.M. Guerrero, J.C. Vasquez, J. Matas, L.G. de Vicuna, M. Castilla, Hierarchical control of droop-controlled AC and DC microgrids—a general approach towards standardization. IEEE Trans. Ind. Electron. 58(1), 158–172 (2011)CrossRef J.M. Guerrero, J.C. Vasquez, J. Matas, L.G. de Vicuna, M. Castilla, Hierarchical control of droop-controlled AC and DC microgrids—a general approach towards standardization. IEEE Trans. Ind. Electron. 58(1), 158–172 (2011)CrossRef
11.
go back to reference W. Bower, D. Ton, R. Guttromson, S. Glover, J. Stamp, D. Bhatnagar, J. Reilly, The advanced microgrid integration and interoperability. Sandia National Laboratories, Albuquerque, NM, Report SAND2014–1535 (2014) W. Bower, D. Ton, R. Guttromson, S. Glover, J. Stamp, D. Bhatnagar, J. Reilly, The advanced microgrid integration and interoperability. Sandia National Laboratories, Albuquerque, NM, Report SAND2014–1535 (2014)
12.
go back to reference M. Begum, M. Abuhilaleh, L. Li, J. Zhu, Distributed secondary voltage regulation for autonomous microgrid. in 20th International Conference on Electrical Machines and Systems (ICEMS), Sydney, Australia, pp. 1–6, 11–14 August 2017 M. Begum, M. Abuhilaleh, L. Li, J. Zhu, Distributed secondary voltage regulation for autonomous microgrid. in 20th International Conference on Electrical Machines and Systems (ICEMS), Sydney, Australia, pp. 1–6, 11–14 August 2017
13.
go back to reference C.X. Dou, B. Liu, Multi-agent based hierarchical hybrid control for smart microgrid. IEEE Trans. Smart Grid 4(2), 771–778 (2013)CrossRef C.X. Dou, B. Liu, Multi-agent based hierarchical hybrid control for smart microgrid. IEEE Trans. Smart Grid 4(2), 771–778 (2013)CrossRef
14.
go back to reference Y. Han, H. Li, P. Shen, E.A.A. Coelho, J.M. Guerrero, Review of active and reactive power sharing strategies in hierarchical controlled microgrids. IEEE Trans. Power Electron. 32(3), 2427–2451 (2017)CrossRef Y. Han, H. Li, P. Shen, E.A.A. Coelho, J.M. Guerrero, Review of active and reactive power sharing strategies in hierarchical controlled microgrids. IEEE Trans. Power Electron. 32(3), 2427–2451 (2017)CrossRef
15.
go back to reference N. Rahbari Asr, Y. Zhang, M.Y. Chow, Cooperative distributed scheduling for storage devices in microgrids using dynamic KKT multipliers and consensus networks. in Proceedings of IEEE Power and Energy Society General Meeting 9 (2015), pp. 1–5 N. Rahbari Asr, Y. Zhang, M.Y. Chow, Cooperative distributed scheduling for storage devices in microgrids using dynamic KKT multipliers and consensus networks. in Proceedings of IEEE Power and Energy Society General Meeting 9 (2015), pp. 1–5
16.
go back to reference A. Mehrizi Sani, M. Yazdanian, Distributed Control Techniques in Microgrids. IEEE Trans. Smart Grid. 5(6), 2901–2909 (2014)CrossRef A. Mehrizi Sani, M. Yazdanian, Distributed Control Techniques in Microgrids. IEEE Trans. Smart Grid. 5(6), 2901–2909 (2014)CrossRef
17.
go back to reference F. Katiraei, M.R. Iravani, P.W. Lehn, Micro-grid autonomous operation during and subsequent to islanding process. IEEE Trans. Power Del. 20(1), 248–257 (2005)CrossRef F. Katiraei, M.R. Iravani, P.W. Lehn, Micro-grid autonomous operation during and subsequent to islanding process. IEEE Trans. Power Del. 20(1), 248–257 (2005)CrossRef
18.
go back to reference J.A.P. Lopes, C.L. Moreira, A.G. Madureira, Defining control strategies for microgrids islanded operation. IEEE Trans. Power Syst. 21(2), 916–924 (2006)CrossRef J.A.P. Lopes, C.L. Moreira, A.G. Madureira, Defining control strategies for microgrids islanded operation. IEEE Trans. Power Syst. 21(2), 916–924 (2006)CrossRef
19.
go back to reference F. Gao, M.R. Iravani, A control strategy for a distributed generation unit in grid-connected and autonomous modes of operation. IEEE Trans. Power Del. 23(2), 850–859 (2008)CrossRef F. Gao, M.R. Iravani, A control strategy for a distributed generation unit in grid-connected and autonomous modes of operation. IEEE Trans. Power Del. 23(2), 850–859 (2008)CrossRef
20.
go back to reference Y.J. Cheng, E. Sng, A novel communication strategy for decentralized control of paralleled multi-inverter systems. IEEE Trans. Power Electron. 21(1), 148–156 (2006)CrossRef Y.J. Cheng, E. Sng, A novel communication strategy for decentralized control of paralleled multi-inverter systems. IEEE Trans. Power Electron. 21(1), 148–156 (2006)CrossRef
21.
go back to reference M. Prodanovic, T.C. Green, High-quality power generation through distributed control of a power park microgrid. IEEE Trans. Ind. Electron. 53(5), 1471–1482 (2006)CrossRef M. Prodanovic, T.C. Green, High-quality power generation through distributed control of a power park microgrid. IEEE Trans. Ind. Electron. 53(5), 1471–1482 (2006)CrossRef
22.
go back to reference L. Dimeas, N.D. Hatziargyriou, Operation of a multiagent system for microgrid control. IEEE Trans. Power Syst. 20(3), 1447–1455 (2005)CrossRef L. Dimeas, N.D. Hatziargyriou, Operation of a multiagent system for microgrid control. IEEE Trans. Power Syst. 20(3), 1447–1455 (2005)CrossRef
23.
go back to reference A. Mehrizi Sani, R. Iravani, Secondary control of microgrids: Application of potential functions. in Proceedings of CIGRE Session, Paris, France (2010), pp. 1–8 A. Mehrizi Sani, R. Iravani, Secondary control of microgrids: Application of potential functions. in Proceedings of CIGRE Session, Paris, France (2010), pp. 1–8
24.
go back to reference Angela Chuang, Mark McGranaghan, Mack Grady, Master controller requirements specification for perfect power systems (as outlined in the Galvin electricity initiative). 3rd Edition, EPRI, Chicago, IL, USA, 45-83 (2007) Angela Chuang, Mark McGranaghan, Mack Grady, Master controller requirements specification for perfect power systems (as outlined in the Galvin electricity initiative). 3rd Edition, EPRI, Chicago, IL, USA, 45-83 (2007)
25.
go back to reference M. Savaghebi, A. Jalilian, J. Vasquez, J. Guerrero, Secondary control scheme for voltage unbalance compensation in an islanded droop-controlled microgrid. IEEE Trans. Smart Grid 3(2), 797–807 (2012)CrossRef M. Savaghebi, A. Jalilian, J. Vasquez, J. Guerrero, Secondary control scheme for voltage unbalance compensation in an islanded droop-controlled microgrid. IEEE Trans. Smart Grid 3(2), 797–807 (2012)CrossRef
26.
go back to reference B. Marinescu, H. Bourles, Robust predictive control for the flexible coordinated secondary voltage control of large-scale power systems. IEEE Trans. Power Syst. 14(4), 1262–1268 (1999)CrossRef B. Marinescu, H. Bourles, Robust predictive control for the flexible coordinated secondary voltage control of large-scale power systems. IEEE Trans. Power Syst. 14(4), 1262–1268 (1999)CrossRef
28.
go back to reference P.M. Namara, R.R. Negenborn, B.D. Schutter, G. Lightbody, Optimal coordination of a multiple HVDC link system using centralized and distributed control. IEEE Trans. Control Syst. Technol. 21(2), 302–314 (2013)CrossRef P.M. Namara, R.R. Negenborn, B.D. Schutter, G. Lightbody, Optimal coordination of a multiple HVDC link system using centralized and distributed control. IEEE Trans. Control Syst. Technol. 21(2), 302–314 (2013)CrossRef
29.
go back to reference M. Moradzadeh, R. Boel, L. Vandevelde, Voltage coordination in multi-area power systems via distributed model predictive control. IEEE Trans. Power Syst. 28(1), 513–521 (2013)CrossRef M. Moradzadeh, R. Boel, L. Vandevelde, Voltage coordination in multi-area power systems via distributed model predictive control. IEEE Trans. Power Syst. 28(1), 513–521 (2013)CrossRef
30.
go back to reference M. Ilic-Spong, J. Christensen, K.L. Eichorn, Secondary voltage control using pilot point information. IEEE Trans. Power Syst. 3(2), 660–668 (1988)CrossRef M. Ilic-Spong, J. Christensen, K.L. Eichorn, Secondary voltage control using pilot point information. IEEE Trans. Power Syst. 3(2), 660–668 (1988)CrossRef
31.
go back to reference A. Etemadi, E. Davison, R. Iravani, A decentralized robust control strategy for multi-der microgrids—Part I: Fundamental concepts. IEEE Trans. Power Del. 27(4), 1843–1853 (2012)CrossRef A. Etemadi, E. Davison, R. Iravani, A decentralized robust control strategy for multi-der microgrids—Part I: Fundamental concepts. IEEE Trans. Power Del. 27(4), 1843–1853 (2012)CrossRef
32.
go back to reference R. Olfati Saber, A.A. Fax, R.M. Murray, Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95(1), 215–233 (2007)MATHCrossRef R. Olfati Saber, A.A. Fax, R.M. Murray, Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95(1), 215–233 (2007)MATHCrossRef
33.
go back to reference R.P. Agaev, P.Y. Chebotarev, The matrix of maximum out forests of a digraph and its applications. Autom. Remote Control 61(9), 1424–1450 (2000)MathSciNetMATH R.P. Agaev, P.Y. Chebotarev, The matrix of maximum out forests of a digraph and its applications. Autom. Remote Control 61(9), 1424–1450 (2000)MathSciNetMATH
34.
go back to reference T. Keviczky, F. Borrelli, K. Fregene, D. Godbole, G.J. Balas, Decentralized receding horizon control and coordination of autonomous vehicle formations. IEEE Trans. Control Syst. Technol. 16(1), 19–33 (2008)CrossRef T. Keviczky, F. Borrelli, K. Fregene, D. Godbole, G.J. Balas, Decentralized receding horizon control and coordination of autonomous vehicle formations. IEEE Trans. Control Syst. Technol. 16(1), 19–33 (2008)CrossRef
35.
go back to reference Y. Xu, W. Liu, Novel multiagent based load restoration algorithm for microgrids. IEEE Trans. Smart Grid 2(1), 152–161 (2011)CrossRef Y. Xu, W. Liu, Novel multiagent based load restoration algorithm for microgrids. IEEE Trans. Smart Grid 2(1), 152–161 (2011)CrossRef
36.
go back to reference S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, 2nd edn. (Prentice Hall, Upper Saddle River, NJ, USA, 2003)MATH S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, 2nd edn. (Prentice Hall, Upper Saddle River, NJ, USA, 2003)MATH
37.
go back to reference F.C. Scheweppe, J. Wildes, Power system static-state estimation, part I: Exact model. IEEE Trans. Power App. Syst. 89(1), 120–125 (1970)CrossRef F.C. Scheweppe, J. Wildes, Power system static-state estimation, part I: Exact model. IEEE Trans. Power App. Syst. 89(1), 120–125 (1970)CrossRef
38.
go back to reference J.J. Grainger, W.D. Stevenson, Power System Analysis (McGraw-Hill, New York, NY, USA, 1994) J.J. Grainger, W.D. Stevenson, Power System Analysis (McGraw-Hill, New York, NY, USA, 1994)
39.
go back to reference R. Negenborn, B. De Schutter, J. Hellendoorn, Multi-agent model predictive control: A survey. Delft Center for Systems and Control , Delft University of Technology, Delft, The Netherlands, Tech. Rep. 04–010 (2004) R. Negenborn, B. De Schutter, J. Hellendoorn, Multi-agent model predictive control: A survey. Delft Center for Systems and Control , Delft University of Technology, Delft, The Netherlands, Tech. Rep. 04–010 (2004)
40.
go back to reference S. McArthur et al., Multi-agent systems for power engineering applications—Part I: Concepts, approaches, and technical challenges. IEEE Trans. Power Syst. 22(4), 1743–1752 (2007)CrossRef S. McArthur et al., Multi-agent systems for power engineering applications—Part I: Concepts, approaches, and technical challenges. IEEE Trans. Power Syst. 22(4), 1743–1752 (2007)CrossRef
41.
go back to reference M. Falahi, K. Butler Purry, M. Ehsani, Dynamic reactive power control of islanded microgrids. IEEE Trans. Power Syst. 28(4), 3649–3657 (2013)CrossRef M. Falahi, K. Butler Purry, M. Ehsani, Dynamic reactive power control of islanded microgrids. IEEE Trans. Power Syst. 28(4), 3649–3657 (2013)CrossRef
42.
go back to reference S.D.J. McArthur et al., Multi-agent systems for power engineering applications—Part II: Technologies, standards, and tools for building multi-agent systems. IEEE Trans. Power Syst. 22(4), 1753–1759 (2007)CrossRef S.D.J. McArthur et al., Multi-agent systems for power engineering applications—Part II: Technologies, standards, and tools for building multi-agent systems. IEEE Trans. Power Syst. 22(4), 1753–1759 (2007)CrossRef
43.
go back to reference N. Cai, J. Mitra, A decentralized control architecture for a micro- grid with power electronic interfaces. in Proceedings North America Power Symposium (NAPS), Arlington, TX, USA (2010), pp. 1–8 N. Cai, J. Mitra, A decentralized control architecture for a micro- grid with power electronic interfaces. in Proceedings North America Power Symposium (NAPS), Arlington, TX, USA (2010), pp. 1–8
44.
go back to reference A. Nedic, A. Ozdaglar, Distributed subgradient methods for multi-agent optimization. IEEE Trans. Autom. Control 54(1), 48–60 (2009)MathSciNetMATHCrossRef A. Nedic, A. Ozdaglar, Distributed subgradient methods for multi-agent optimization. IEEE Trans. Autom. Control 54(1), 48–60 (2009)MathSciNetMATHCrossRef
45.
go back to reference A. Nedic, A. Ozdaglar, P.A. Parrilo, Constrained consensus and optimization in multi-agent networks. IEEE Trans. Autom. Control 55(4), 922–938 (2010)MathSciNetMATHCrossRef A. Nedic, A. Ozdaglar, P.A. Parrilo, Constrained consensus and optimization in multi-agent networks. IEEE Trans. Autom. Control 55(4), 922–938 (2010)MathSciNetMATHCrossRef
46.
go back to reference G. Beccuti, T. Demiray, G. Andersson, M. Morari, A Lagrangian decomposition algorithm for optimal emergency voltage control. IEEE Trans. Power Syst. 23(4), 1769–1779 (2010)CrossRef G. Beccuti, T. Demiray, G. Andersson, M. Morari, A Lagrangian decomposition algorithm for optimal emergency voltage control. IEEE Trans. Power Syst. 23(4), 1769–1779 (2010)CrossRef
47.
go back to reference A. Ravindran, K. Ragsdell, G. Reklaitis, Engineering Optimization: Methods and Applications, 2nd edn. (Wiley, Hoboken, NJ, USA, 2006)CrossRef A. Ravindran, K. Ragsdell, G. Reklaitis, Engineering Optimization: Methods and Applications, 2nd edn. (Wiley, Hoboken, NJ, USA, 2006)CrossRef
48.
go back to reference J. Conejo, E. Castillo, R. Mmguez, R. Garaa-Bertrand, Decomposition Techniques in Mathematical Programming: Engineering and Science Applications (Springer, New York, NY, USA, 2006) J. Conejo, E. Castillo, R. Mmguez, R. Garaa-Bertrand, Decomposition Techniques in Mathematical Programming: Engineering and Science Applications (Springer, New York, NY, USA, 2006)
49.
go back to reference G. Hug Glanzmann, G. Andersson, Decentralized optimal power flow control for overlapping areas in power systems. IEEE Trans. Power Syst. 24(1), 327–336 (2009)CrossRef G. Hug Glanzmann, G. Andersson, Decentralized optimal power flow control for overlapping areas in power systems. IEEE Trans. Power Syst. 24(1), 327–336 (2009)CrossRef
50.
go back to reference H. Kim, R. Baldick, A comparison of distributed optimal power flow algorithms. IEEE Trans. Power Syst. 15(3), 599–604 (2000)CrossRef H. Kim, R. Baldick, A comparison of distributed optimal power flow algorithms. IEEE Trans. Power Syst. 15(3), 599–604 (2000)CrossRef
51.
go back to reference R. Baldick, B.H. Kim, C. Chase, Y. Luo, A fast distributed implementation of optimal power flow. IEEE Trans. Power Syst. 14(3), 858–864 (1999)CrossRef R. Baldick, B.H. Kim, C. Chase, Y. Luo, A fast distributed implementation of optimal power flow. IEEE Trans. Power Syst. 14(3), 858–864 (1999)CrossRef
52.
go back to reference M. Parker, L. Ran, S. Finney, Distributed control of a fault-tolerant modular multilevel inverter for direct-drive wind turbine grid interfacing. IEEE Trans. Ind. Electron. 60(2), 509–522 (2013)CrossRef M. Parker, L. Ran, S. Finney, Distributed control of a fault-tolerant modular multilevel inverter for direct-drive wind turbine grid interfacing. IEEE Trans. Ind. Electron. 60(2), 509–522 (2013)CrossRef
53.
go back to reference H.W. Dommel, W.F. Tinney, Optimal power flow solutions. IEEE Trans. PowerApp. Syst. 87(10), 1866–1874 (1968)CrossRef H.W. Dommel, W.F. Tinney, Optimal power flow solutions. IEEE Trans. PowerApp. Syst. 87(10), 1866–1874 (1968)CrossRef
54.
go back to reference C.H. Lin, S.Y. Lin, Distributed optimal power flow with discrete control variables of large distributed power systems. IEEE Trans. Power Syst. 23(2), 1383–1392 (2008)CrossRef C.H. Lin, S.Y. Lin, Distributed optimal power flow with discrete control variables of large distributed power systems. IEEE Trans. Power Syst. 23(2), 1383–1392 (2008)CrossRef
55.
go back to reference B.H. Kim, R. Baldick, A comparison of distributed optimal power flow algorithms. IEEE Trans. Power Syst. 15(2), 599–604 (2000)CrossRef B.H. Kim, R. Baldick, A comparison of distributed optimal power flow algorithms. IEEE Trans. Power Syst. 15(2), 599–604 (2000)CrossRef
56.
go back to reference W. Qi, J. Liu, P.D. Christodes, Distributed supervisory predictive control of distributed wind and solar energy systems. IEEE Trans. Control Syst. Technol. 21(2), 504–512 (2013)CrossRef W. Qi, J. Liu, P.D. Christodes, Distributed supervisory predictive control of distributed wind and solar energy systems. IEEE Trans. Control Syst. Technol. 21(2), 504–512 (2013)CrossRef
57.
go back to reference L. Gan, U. Topcu, S.H. Low, Optimal decentralized protocol for electric vehicle charging. IEEE Trans. Power Syst. 28(2), 940–951 (2013)CrossRef L. Gan, U. Topcu, S.H. Low, Optimal decentralized protocol for electric vehicle charging. IEEE Trans. Power Syst. 28(2), 940–951 (2013)CrossRef
58.
go back to reference R. Mudumbai, S. Dasgupta, B. Cho, Distributed control for optimal economic dispatch of a network of heterogeneous power generators. IEEE Trans. Power Syst. 27(4), 1750–1760 (2012)CrossRef R. Mudumbai, S. Dasgupta, B. Cho, Distributed control for optimal economic dispatch of a network of heterogeneous power generators. IEEE Trans. Power Syst. 27(4), 1750–1760 (2012)CrossRef
59.
go back to reference D. McLarty, C. Civit Sabate, J. Brouwer, F. Jabbari, Micro-grid energy dispatch optimization and predictive control algorithms; A UC Irvine case study. Int. J. Electr. Power Energy Syst. 65, 179–190 (2015)CrossRef D. McLarty, C. Civit Sabate, J. Brouwer, F. Jabbari, Micro-grid energy dispatch optimization and predictive control algorithms; A UC Irvine case study. Int. J. Electr. Power Energy Syst. 65, 179–190 (2015)CrossRef
60.
go back to reference E. Olivares, A. Mehrizi Sani, A.H. Etemadi, C.A. Canizares, R. Iravani, M. Kazerani, A.H. Hajimiragha, O. Gomis Bellmunt, M. Saeedifard, R. Palma Behnke, G.A. Jimenez Estevez, N.D. Hatziargyriou, Trends in microgrid control. IEEE Trans. Smart Grid 5(4), 1905–1919 (2014)CrossRef E. Olivares, A. Mehrizi Sani, A.H. Etemadi, C.A. Canizares, R. Iravani, M. Kazerani, A.H. Hajimiragha, O. Gomis Bellmunt, M. Saeedifard, R. Palma Behnke, G.A. Jimenez Estevez, N.D. Hatziargyriou, Trends in microgrid control. IEEE Trans. Smart Grid 5(4), 1905–1919 (2014)CrossRef
61.
go back to reference S. Butenko, R. Murphey, P.M. Pardalos, Recent Developments in Cooperative Control and Optimization (Springer-Verlag, Boston, 2013)MATH S. Butenko, R. Murphey, P.M. Pardalos, Recent Developments in Cooperative Control and Optimization (Springer-Verlag, Boston, 2013)MATH
62.
go back to reference L.A. Wolsey, G.L. Nemhauser, Integer and Combinatorial Optimization (Wiley, Hoboken, NJ, 2014)MATH L.A. Wolsey, G.L. Nemhauser, Integer and Combinatorial Optimization (Wiley, Hoboken, NJ, 2014)MATH
63.
go back to reference NETL modern grid strategy—Powering our 21st-century economy: A compendium of smart grid technologies. White Paper, National Energy Technology Laboratory (NETL) for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability (2009) NETL modern grid strategy—Powering our 21st-century economy: A compendium of smart grid technologies. White Paper, National Energy Technology Laboratory (NETL) for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability (2009)
64.
go back to reference Z. Cheng, J. Duan, M. Chow, Reliability assessment and comparison between centralized and distributed energy management system in islanding microgrid. in Proceedings North American Power Symposium (NAPS) (2017), pp. 1–6 Z. Cheng, J. Duan, M. Chow, Reliability assessment and comparison between centralized and distributed energy management system in islanding microgrid. in Proceedings North American Power Symposium (NAPS) (2017), pp. 1–6
Metadata
Title
Distributed Control of Microgrids
Authors
Ahmet Karaarslan
M. Emrah Seker
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-23723-3_16