Skip to main content
Top
Published in: Journal of Materials Science 3/2019

11-10-2018 | Materials for life sciences

DNA-directed enzyme immobilization on Fe3O4 modified with nitrogen-doped graphene quantum dots as a highly efficient and stable multi-catalyst system

Authors: Hao Shen, Jiayi Song, Ye Yang, Ping Su, Yi Yang

Published in: Journal of Materials Science | Issue 3/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The exploration of new tactics for manufacturing artificial immobilized multi-enzyme systems based on enzyme cascades has recently attracted considerable interest because of the urgent need for multi-enzyme catalysts and the high cost of free enzymes. Because of the inevitable limitations of native enzymes such as instability and storage issues, the development of nanozyme–enzyme cascades is needed. A versatile strategy was developed for fabricating an efficient multi-catalyst system by immobilizing glucose oxidase (GOx) on ferriferous oxide nanocomposites functionalized with nitrogen-doped graphene quantum dots (Fe3O4@N-GQDs) through DNA-directed immobilization. The Fe3O4@N-GQDs acted as a carrier for the natural enzyme and showed high peroxidase activity which enabled an enzyme cascade that included GOx to be set up. This multi-catalyst system showed great catalytic activity, reversibility and operational stability. The surfaces of GOx-targeted magnetic nanoparticles were regenerated by mild dehybridization of DNA. The Michaelis constant (Km) and maximum initial velocity (Vmax) of the multi-catalyst system were 1.069 mM and 11.2 × 10−8 M s−1, respectively, which are considerably better than the corresponding values for adsorbed and free bienzyme combinations. The increased bioactivity of the multi-catalyst system is ascribed to the satisfactory peroxidase-like activity of Fe3O4@N-GQDs, the enzyme–promoting effect of the QDs and enhancement by DNA-directed immobilization. Because of the diverse range of possible nanozyme–enzyme combinations and high efficiency of this approach, this work provides a novel pathway for the manufacturing of synthetic enzyme catalyst systems, which have great potential in the field of biotechnology.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Bist I, Bhakta S, Jiang D, Keyes TE, Martin A, Forster RJ, Rusling JF (2017) Evaluating metabolite-related DNA oxidation and adduct damage from aryl amines using a microfluidic ECL array. Anal Chem 89:12441–12449CrossRef Bist I, Bhakta S, Jiang D, Keyes TE, Martin A, Forster RJ, Rusling JF (2017) Evaluating metabolite-related DNA oxidation and adduct damage from aryl amines using a microfluidic ECL array. Anal Chem 89:12441–12449CrossRef
2.
go back to reference Kim M, Shim J, Li T, Woo M, Cho D, Lee J, Park HG (2012) Colorimetric quantification of galactose using a nanostructured multi-catalyst system entrapping galactose oxidase and magnetic nanoparticles as peroxidase mimetics. Analyst 137:1137–1143CrossRef Kim M, Shim J, Li T, Woo M, Cho D, Lee J, Park HG (2012) Colorimetric quantification of galactose using a nanostructured multi-catalyst system entrapping galactose oxidase and magnetic nanoparticles as peroxidase mimetics. Analyst 137:1137–1143CrossRef
3.
go back to reference Chen Y, Xianyu Y, Wu J, Dong M, Zheng W, Sun J, Jiang X (2017) Double-enzymes-mediated bioluminescent sensor for quantitative and ultrasensitive point-of-care testing. Anal Chem 89:5422–5427CrossRef Chen Y, Xianyu Y, Wu J, Dong M, Zheng W, Sun J, Jiang X (2017) Double-enzymes-mediated bioluminescent sensor for quantitative and ultrasensitive point-of-care testing. Anal Chem 89:5422–5427CrossRef
4.
go back to reference Zhong C, You C, Wei P, Zhang Y (2017) Thermal cycling cascade biocatalysis of Myo-inositol synthesis from sucrose. ACS Catal 7:5992–5999CrossRef Zhong C, You C, Wei P, Zhang Y (2017) Thermal cycling cascade biocatalysis of Myo-inositol synthesis from sucrose. ACS Catal 7:5992–5999CrossRef
5.
go back to reference Peschke T, Skoupi M, Burgahn T, Gallus S, Ahmed I, Rabe K, Niemeyer C (2017) Self immobilizing fusion enzymes for compartmentalized biocatalysis. ACS Catal 7:7866–7872CrossRef Peschke T, Skoupi M, Burgahn T, Gallus S, Ahmed I, Rabe K, Niemeyer C (2017) Self immobilizing fusion enzymes for compartmentalized biocatalysis. ACS Catal 7:7866–7872CrossRef
6.
go back to reference Huber D, Tegl G, Mensah A, Beer B, Baumann M, Borth N, Sygmund C, Ludwig R, Guebitz GM (2017) A dual-enzyme hydrogen peroxide generation machinery in hydrogels supports antimicrobial wound treatment. ACS Appl Mater Interfaces 9:15307–15316CrossRef Huber D, Tegl G, Mensah A, Beer B, Baumann M, Borth N, Sygmund C, Ludwig R, Guebitz GM (2017) A dual-enzyme hydrogen peroxide generation machinery in hydrogels supports antimicrobial wound treatment. ACS Appl Mater Interfaces 9:15307–15316CrossRef
7.
go back to reference Pitzalis F, Monduzzi M, Salis A (2017) A bienzymatic biocatalyst constituted by glucose oxidase and horseradish peroxidase immobilized on ordered mesoporous silica. Microporous Mesoporous Mater 241:145–154CrossRef Pitzalis F, Monduzzi M, Salis A (2017) A bienzymatic biocatalyst constituted by glucose oxidase and horseradish peroxidase immobilized on ordered mesoporous silica. Microporous Mesoporous Mater 241:145–154CrossRef
8.
go back to reference Sun J, Du K, Song X, Gao Q, Wu H, Ma J, Ji P, Feng W (2015) Specific immobilization of D amino acid oxidase on hematin-functionalized support mimicking multi-enzyme catalysis. Green Chem 17:4465–4472CrossRef Sun J, Du K, Song X, Gao Q, Wu H, Ma J, Ji P, Feng W (2015) Specific immobilization of D amino acid oxidase on hematin-functionalized support mimicking multi-enzyme catalysis. Green Chem 17:4465–4472CrossRef
10.
go back to reference Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42:6060–6093CrossRef Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42:6060–6093CrossRef
12.
go back to reference Song Y, Qu K, Zhao C, Ren J, Qu X (2010) Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater 22:2206–2210CrossRef Song Y, Qu K, Zhao C, Ren J, Qu X (2010) Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater 22:2206–2210CrossRef
13.
go back to reference Wei H, Wang E (2008) Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal Chem 80:2250–2254CrossRef Wei H, Wang E (2008) Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal Chem 80:2250–2254CrossRef
14.
go back to reference Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2:577–583CrossRef Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2:577–583CrossRef
15.
go back to reference Yang X, Zhang X, Ma Y, Huang Y, Wang Y, Chen Y (2009) Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J Mater Chem 19:2710–2714CrossRef Yang X, Zhang X, Ma Y, Huang Y, Wang Y, Chen Y (2009) Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J Mater Chem 19:2710–2714CrossRef
16.
go back to reference Wang YJ, Wilkinson DP, Zhang J (2011) Noncarbon support materials for polymer electrolyte membrane fuel cell electrocatalysts. J Chem Rev 111:7625–7651CrossRef Wang YJ, Wilkinson DP, Zhang J (2011) Noncarbon support materials for polymer electrolyte membrane fuel cell electrocatalysts. J Chem Rev 111:7625–7651CrossRef
17.
go back to reference Yousefinejad S, Rasti H, Hajebi M, Kowsari M, Sadravi S, Honarasa F (2017) Design of C-dots/Fe3O4 magnetic nanocomposite as an efficient newnanozyme and its application for determination of H2O2 in nanomolarlevel. Sens Actuators B Chem 247:691–696CrossRef Yousefinejad S, Rasti H, Hajebi M, Kowsari M, Sadravi S, Honarasa F (2017) Design of C-dots/Fe3O4 magnetic nanocomposite as an efficient newnanozyme and its application for determination of H2O2 in nanomolarlevel. Sens Actuators B Chem 247:691–696CrossRef
18.
go back to reference Zhang W, Wu X, Hu J, Guo Y, Wan L (2008) Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries. Adv Funct Mater 18:3941–3946CrossRef Zhang W, Wu X, Hu J, Guo Y, Wan L (2008) Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries. Adv Funct Mater 18:3941–3946CrossRef
19.
go back to reference Wu W, Yang S, Sun Y, Parvez K, Feng X, Muullen K (2012) 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J Am Chem Soc 134:9082–9085CrossRef Wu W, Yang S, Sun Y, Parvez K, Feng X, Muullen K (2012) 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J Am Chem Soc 134:9082–9085CrossRef
20.
go back to reference Yang G, Li Y, Rana RK, Zhu JJ (2013) Pt-Au/nitrogen-doped graphene nanocomposites for enhanced electrochemical activities. J Mater Chem A 1:1754–1762CrossRef Yang G, Li Y, Rana RK, Zhu JJ (2013) Pt-Au/nitrogen-doped graphene nanocomposites for enhanced electrochemical activities. J Mater Chem A 1:1754–1762CrossRef
21.
go back to reference Vranish J, Ancona M, Oh E, Susumu K, Medintz I (2017) Enhancing coupled enzymatic activity by conjugating one enzyme to a nanoparticle. Nanoscale 9:5172–5187CrossRef Vranish J, Ancona M, Oh E, Susumu K, Medintz I (2017) Enhancing coupled enzymatic activity by conjugating one enzyme to a nanoparticle. Nanoscale 9:5172–5187CrossRef
22.
go back to reference Niemeyer CM (2010) Semisynthetic DNA-protein conjugates for biosensing and nanofabrication. Angew Chem Int Ed 49:1200–1216CrossRef Niemeyer CM (2010) Semisynthetic DNA-protein conjugates for biosensing and nanofabrication. Angew Chem Int Ed 49:1200–1216CrossRef
23.
go back to reference Jonkheijm P, Weinrich D, Schröder H, Niemeyer CM, Waldmann H (2008) Oriented immobilization of farnesylated proteins by the ehiol-ene reaction. Angew Chem Int Ed 47:9618–9647CrossRef Jonkheijm P, Weinrich D, Schröder H, Niemeyer CM, Waldmann H (2008) Oriented immobilization of farnesylated proteins by the ehiol-ene reaction. Angew Chem Int Ed 47:9618–9647CrossRef
24.
go back to reference Fruk L, Kuhlmann J, Niemeyer CM (2009) Analysis of heme-reconstitution of apoenzymes by means of surface plasmon resonance. Chem Commun 2:230–232CrossRef Fruk L, Kuhlmann J, Niemeyer CM (2009) Analysis of heme-reconstitution of apoenzymes by means of surface plasmon resonance. Chem Commun 2:230–232CrossRef
25.
go back to reference Schröder H, Hoffmann L, Müller J, Alhorn P, Fleger M, Neyer A, Niemeyer CM (2009) Addressable microfluidic polymer chip for DNA-directed immobilization of oligonucleotide-tagged compounds. Small 5:1547–1552CrossRef Schröder H, Hoffmann L, Müller J, Alhorn P, Fleger M, Neyer A, Niemeyer CM (2009) Addressable microfluidic polymer chip for DNA-directed immobilization of oligonucleotide-tagged compounds. Small 5:1547–1552CrossRef
26.
go back to reference Yang Y, Su P, Zheng K, Wang T, Song J, Yang Y (2016) A self-directed and reconstructible immobilization strategy: DNA directed immobilization of alkaline phosphatase for enzyme inhibition assays. RSC Adv 6:36849–36856CrossRef Yang Y, Su P, Zheng K, Wang T, Song J, Yang Y (2016) A self-directed and reconstructible immobilization strategy: DNA directed immobilization of alkaline phosphatase for enzyme inhibition assays. RSC Adv 6:36849–36856CrossRef
27.
go back to reference Qu D, Zheng M, Du P, Zhou E, Zhang L, Li D, Tan H, Zhao Z, Xie Z, Sun Z (2013) Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale 5:12272–12277CrossRef Qu D, Zheng M, Du P, Zhou E, Zhang L, Li D, Tan H, Zhao Z, Xie Z, Sun Z (2013) Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale 5:12272–12277CrossRef
28.
go back to reference Deng Y, Qi D, Deng C, Zhang X, Zhao D (2008) Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J Am Chem Soc 130:28–29CrossRef Deng Y, Qi D, Deng C, Zhang X, Zhao D (2008) Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J Am Chem Soc 130:28–29CrossRef
29.
go back to reference He C, Wu S, Zhao N, Shi C, Liu E, Shi C, Liu J (2013) Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. ACS Nano 7:4459–4469CrossRef He C, Wu S, Zhao N, Shi C, Liu E, Shi C, Liu J (2013) Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. ACS Nano 7:4459–4469CrossRef
30.
go back to reference Ma Z, Huang X, Dou S, Wu J, Wang S (2014) One-pot synthesis of Fe2O3 nanoparticles on nitrogen-doped graphene as advanced supercapacitor electrode materials. J Phys Chem C 118:17231–17239CrossRef Ma Z, Huang X, Dou S, Wu J, Wang S (2014) One-pot synthesis of Fe2O3 nanoparticles on nitrogen-doped graphene as advanced supercapacitor electrode materials. J Phys Chem C 118:17231–17239CrossRef
31.
go back to reference Chen S, Hai X, Chen XW, Wang JH (2014) In situ growth of silver nanoparticles on graphene quantum dots for ultrasensitive colorimetric detection of H2O2 and glucose. Anal Chem 86:6689–6694CrossRef Chen S, Hai X, Chen XW, Wang JH (2014) In situ growth of silver nanoparticles on graphene quantum dots for ultrasensitive colorimetric detection of H2O2 and glucose. Anal Chem 86:6689–6694CrossRef
32.
go back to reference Cao X, Li S, Chen L, Ding H, Xu H, Huang Y, Li J, Liu N, Cao W, Zhu Y, Shen B, Shao N (2009) Combining use of a panel of ssDNA aptamers in the detection of staphylococcus aureus. Nucleic Acids Res 37:4621–4628CrossRef Cao X, Li S, Chen L, Ding H, Xu H, Huang Y, Li J, Liu N, Cao W, Zhu Y, Shen B, Shao N (2009) Combining use of a panel of ssDNA aptamers in the detection of staphylococcus aureus. Nucleic Acids Res 37:4621–4628CrossRef
33.
go back to reference Sefah K, Shangguan D, Xiong X, O’Donoghue MB, Tan W (2010) Development of DNA aptamers using cell-SELEX. Nat Protoc 5:1169CrossRef Sefah K, Shangguan D, Xiong X, O’Donoghue MB, Tan W (2010) Development of DNA aptamers using cell-SELEX. Nat Protoc 5:1169CrossRef
34.
go back to reference Carlsson N, Borde A, Wölfel S, Kerman B, Larsson A (2011) Quantification of protein concentration by the Bradford method in the presence of pharmaceutical polymers. Anal Biochem 1:116–121CrossRef Carlsson N, Borde A, Wölfel S, Kerman B, Larsson A (2011) Quantification of protein concentration by the Bradford method in the presence of pharmaceutical polymers. Anal Biochem 1:116–121CrossRef
35.
go back to reference Rodrigues RC, Ortiz C, Berenguer-Murcia A, Torres R, Fernandez-Lafuente R (2013) Modifying enzyme activity and selectivity by immobilization. Chem Soc Rev 42:6290–6307CrossRef Rodrigues RC, Ortiz C, Berenguer-Murcia A, Torres R, Fernandez-Lafuente R (2013) Modifying enzyme activity and selectivity by immobilization. Chem Soc Rev 42:6290–6307CrossRef
36.
go back to reference Rueda N, dos Santos J, Ortiz C, Torres R, Barbosa O, Rodrigues RC, Berenguer-Murcia A, Fernandez-Lafuente R (2016) Chemical modification in the design of immobilized enzyme biocatalysts: drawbacks and opportunities. Chem Rec 16:1436–1455CrossRef Rueda N, dos Santos J, Ortiz C, Torres R, Barbosa O, Rodrigues RC, Berenguer-Murcia A, Fernandez-Lafuente R (2016) Chemical modification in the design of immobilized enzyme biocatalysts: drawbacks and opportunities. Chem Rec 16:1436–1455CrossRef
37.
go back to reference Song J, Lei T, Yang Y, Wu N, Su P, Yang Y (2018) Attachment of enzymes to hydrophilic magnetic nanoparticles through DNA-directed immobilization with enhanced stability and catalytic activity. New J Chem 42:8458–8468CrossRef Song J, Lei T, Yang Y, Wu N, Su P, Yang Y (2018) Attachment of enzymes to hydrophilic magnetic nanoparticles through DNA-directed immobilization with enhanced stability and catalytic activity. New J Chem 42:8458–8468CrossRef
38.
go back to reference Josephy PD, Eling T, Mason RP (1982) The horseradish peroxidase-catalyzed oxidation of 3,5,3′,5′-tetramethylbenzidine. Free radical and charge-transfer complex intermediates. J Biol Chem 257:3669–3675 Josephy PD, Eling T, Mason RP (1982) The horseradish peroxidase-catalyzed oxidation of 3,5,3′,5′-tetramethylbenzidine. Free radical and charge-transfer complex intermediates. J Biol Chem 257:3669–3675
39.
go back to reference Gao L, Wu J, Gao D (2011) Enzyme-controlled self-assembly and transformation of nanostructures in a tetramethylbenzidine/horseradish peroxidase/H2O2 system. ACS Nano 5:6736–6742CrossRef Gao L, Wu J, Gao D (2011) Enzyme-controlled self-assembly and transformation of nanostructures in a tetramethylbenzidine/horseradish peroxidase/H2O2 system. ACS Nano 5:6736–6742CrossRef
40.
go back to reference Bonnet G, Krichevsky O, Libchaber A (1998) Kinetics of conformational fluctuations in DNA hairpin-loops. PNAS 95:8602–8606CrossRef Bonnet G, Krichevsky O, Libchaber A (1998) Kinetics of conformational fluctuations in DNA hairpin-loops. PNAS 95:8602–8606CrossRef
41.
go back to reference Seeman NC (2007) Structural DNA nanotechnology: an overview. Mol Biol 3:246–257 Seeman NC (2007) Structural DNA nanotechnology: an overview. Mol Biol 3:246–257
42.
go back to reference Rädler JO, Koltover I, Salditt T, Safinya CR (1997) Structure of DNA-cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes. Science 275:810–814CrossRef Rädler JO, Koltover I, Salditt T, Safinya CR (1997) Structure of DNA-cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes. Science 275:810–814CrossRef
43.
go back to reference Yoshimoto M, Miyazaki Y, Sato M, Fukunaga K, Kuboi R (2004) Mechanism for high stability of liposomal glucose oxidase to inhibitor hydrogen peroxide produced in prolonged glucose oxidation. Bioconjugate Chem 5:1055–1061CrossRef Yoshimoto M, Miyazaki Y, Sato M, Fukunaga K, Kuboi R (2004) Mechanism for high stability of liposomal glucose oxidase to inhibitor hydrogen peroxide produced in prolonged glucose oxidation. Bioconjugate Chem 5:1055–1061CrossRef
44.
go back to reference Yoshimoto M, Takaki N, Yamasaki M (2010) Catalase-conjugated liposomes encapsulating glucose oxidase for controlled oxidation of glucose with decomposition of hydrogen peroxide produced. Colloids Surf B 2:403–408CrossRef Yoshimoto M, Takaki N, Yamasaki M (2010) Catalase-conjugated liposomes encapsulating glucose oxidase for controlled oxidation of glucose with decomposition of hydrogen peroxide produced. Colloids Surf B 2:403–408CrossRef
45.
go back to reference Song Y, Wang X, Zhao C, Qu K, Ren J, Qu X (2010) Label-free colorimetric detection of single nucleotide polymorphism by using single-walled carbon nanotube intrinsic peroxidase-like activity. Chem Eur J 16:3617–3621CrossRef Song Y, Wang X, Zhao C, Qu K, Ren J, Qu X (2010) Label-free colorimetric detection of single nucleotide polymorphism by using single-walled carbon nanotube intrinsic peroxidase-like activity. Chem Eur J 16:3617–3621CrossRef
46.
go back to reference Wu H, Liu Y, Li M, Chong Y, Zeng M (2015) Size-dependent tuning of horseradish peroxidase bioreactivity by gold nanoparticles. Nanoscale 10:4505–4513CrossRef Wu H, Liu Y, Li M, Chong Y, Zeng M (2015) Size-dependent tuning of horseradish peroxidase bioreactivity by gold nanoparticles. Nanoscale 10:4505–4513CrossRef
47.
go back to reference Wu C, Lee W, YangY KFH (2011) Size-modulated catalytic activity of enzyme-nanoparticle conjugates: a combined kinetic and theoretical study. Chem Commun 47:7446–7448CrossRef Wu C, Lee W, YangY KFH (2011) Size-modulated catalytic activity of enzyme-nanoparticle conjugates: a combined kinetic and theoretical study. Chem Commun 47:7446–7448CrossRef
48.
go back to reference Kang M, Roberts C, Cheng Y, Chang CA (2011) Gating and intermolecular interactions in ligand-protein association: coarse-grained modeling of HIV-1 protease. J Chem Theory Comput 10:3438–3446CrossRef Kang M, Roberts C, Cheng Y, Chang CA (2011) Gating and intermolecular interactions in ligand-protein association: coarse-grained modeling of HIV-1 protease. J Chem Theory Comput 10:3438–3446CrossRef
49.
go back to reference Song J, Su P, Yang Y, Wang T, Yang Y (2016) DNA directed immobilization enzyme on polyamidoamine tethered magnetic composites with high reusability and stability. J Mater Chem B 4:5873–5882CrossRef Song J, Su P, Yang Y, Wang T, Yang Y (2016) DNA directed immobilization enzyme on polyamidoamine tethered magnetic composites with high reusability and stability. J Mater Chem B 4:5873–5882CrossRef
50.
go back to reference Wu Q, Wang X, Liao C, Wei Q, Wang Q (2015) Microgel coating of magnetic nanoparticles via bienzyme-mediated free-radical polymerization for colorimetric detection of glucose. Nanoscale 7:16578–16582CrossRef Wu Q, Wang X, Liao C, Wei Q, Wang Q (2015) Microgel coating of magnetic nanoparticles via bienzyme-mediated free-radical polymerization for colorimetric detection of glucose. Nanoscale 7:16578–16582CrossRef
51.
go back to reference Yang Y, Zhang R, Zhou B, Song J, Su P, Yang Y (2017) High activity and convenient ratio control: DNA-directed coimmobilization of multiple enzymes on multifunctionalized magnetic nanoparticles. ACS Appl Mater Interfaces 9:37254–37263CrossRef Yang Y, Zhang R, Zhou B, Song J, Su P, Yang Y (2017) High activity and convenient ratio control: DNA-directed coimmobilization of multiple enzymes on multifunctionalized magnetic nanoparticles. ACS Appl Mater Interfaces 9:37254–37263CrossRef
Metadata
Title
DNA-directed enzyme immobilization on Fe3O4 modified with nitrogen-doped graphene quantum dots as a highly efficient and stable multi-catalyst system
Authors
Hao Shen
Jiayi Song
Ye Yang
Ping Su
Yi Yang
Publication date
11-10-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 3/2019
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2992-y

Other articles of this Issue 3/2019

Journal of Materials Science 3/2019 Go to the issue

Premium Partners