Skip to main content
Top
Published in: Evolutionary Intelligence 4/2021

11-07-2020 | Research Paper

DNA motif discovery using chemical reaction optimization

Authors: Sumit Kumar Saha, Md. Rafiqul Islam, Mredul Hasan

Published in: Evolutionary Intelligence | Issue 4/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

DNA motif discovery means to find short similar sequence elements within a set of nucleotide sequences. It has become a compulsory need in bioinformatics for its useful applications such as compression, summarization, and clustering algorithms. Motif discovery is an NP-hard problem and exact algorithms cannot solve it in polynomial time. Many optimization algorithms were proposed to solve this problem. However, none of them can show its supremacy by overcoming all the obstacles. Chemical Reaction Optimization (CRO) is a population based metaheuristic algorithm that can easily fit for the optimization problem. Here, we have proposed an algorithm based on Chemical Reaction Optimization technique to solve the DNA motif discovery problem. The four basic operators of CRO have been redesigned for this problem to search the solution space locally as well as globally. Two additional operators (repair functions) have been proposed to improve the quality of the solutions. They have been applied to the final solution after the iteration stage of CRO to get a better one. Using the flexible mechanism of elementary operators of CRO along with the additional operators (repair functions), it is possible to determine motif more precisely. Our proposed method is compared with other traditional algorithms such as Gibbs sampler, AlignACE (Aligns Nucleic Acid Conserved Elements), MEME (Multiple Expectation Maximization for Motif Elicitation), and ACRI (Ant-Colony-Regulatory-Identification) by testing real-world datasets. The experimental results show that the proposed algorithm can give better results than other traditional algorithms in quality and in less running time. Besides, statistical tests have been performed to show the superiority of the proposed algorithm over other state-of-the-arts in this area.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference Zambelli F, Pesole G, Pavesi G (2012) Motif discovery and transcription factor binding sites before and after the next-generation sequencing era. Brief Bioinform 14(2):225–237CrossRef Zambelli F, Pesole G, Pavesi G (2012) Motif discovery and transcription factor binding sites before and after the next-generation sequencing era. Brief Bioinform 14(2):225–237CrossRef
4.
go back to reference Wikipedia contributors. Position. Wikipedia, The Free Encyclopedia. Wikipedia, The Free Encyclopedia, 1 Jan. 2019. Web. 13 May. 2019 Wikipedia contributors. Position. Wikipedia, The Free Encyclopedia. Wikipedia, The Free Encyclopedia, 1 Jan. 2019. Web. 13 May. 2019
6.
go back to reference Huan HX et al (2015) An efficient ant colony algorithm for DNA motif finding. In: Knowledge and systems engineering. Springer, Cham, pp 589–601 Huan HX et al (2015) An efficient ant colony algorithm for DNA motif finding. In: Knowledge and systems engineering. Springer, Cham, pp 589–601
7.
go back to reference Neuwald AF, Liu JS, Lawrence CE (1995) Gibbs motif sampling: detection of bacterial outer membrane protein repeats. Protein Sci 4(8):1618–1632CrossRef Neuwald AF, Liu JS, Lawrence CE (1995) Gibbs motif sampling: detection of bacterial outer membrane protein repeats. Protein Sci 4(8):1618–1632CrossRef
8.
go back to reference Bailey TL et al (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34(suppl2):W369–W373CrossRef Bailey TL et al (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34(suppl2):W369–W373CrossRef
9.
go back to reference Gutierrez JB, Frith M, Nakai K (2015) A genetic algorithm for motif finding based on statistical significance. In: International conference on bioinformatics and biomedical engineering. Springer, Cham Gutierrez JB, Frith M, Nakai K (2015) A genetic algorithm for motif finding based on statistical significance. In: International conference on bioinformatics and biomedical engineering. Springer, Cham
10.
go back to reference Che D, Song Y, Rasheed K (2005) MDGA: motif discovery using a genetic algorithm. In: Proceedings of the 7th annual conference on Genetic and evolutionary computation. ACM Che D, Song Y, Rasheed K (2005) MDGA: motif discovery using a genetic algorithm. In: Proceedings of the 7th annual conference on Genetic and evolutionary computation. ACM
11.
go back to reference Liu FFM et al (2004) FMGA: finding motifs by genetic algorithm. In: Proceedings. Fourth IEEE symposium on bioinformatics and bioengineering. IEEE Liu FFM et al (2004) FMGA: finding motifs by genetic algorithm. In: Proceedings. Fourth IEEE symposium on bioinformatics and bioengineering. IEEE
12.
go back to reference Al Daoud E (2013) Efficient DNA motif discovery using modified genetic algorithm. Int J Comput Intell Appl 12(03):1350017CrossRef Al Daoud E (2013) Efficient DNA motif discovery using modified genetic algorithm. Int J Comput Intell Appl 12(03):1350017CrossRef
14.
go back to reference Yang C-H, Liu Y-T, Chuang L-Y (2011) DNA motif discovery based on ant colony optimization and expectation maximization. In: Proceedings of the International multi conference of engineers and computer scientists. vol 1 Yang C-H, Liu Y-T, Chuang L-Y (2011) DNA motif discovery based on ant colony optimization and expectation maximization. In: Proceedings of the International multi conference of engineers and computer scientists. vol 1
15.
go back to reference Bouamama S, Boukerram A, Al-Badarneh AF (2010) Motif finding using ant colony optimization. In: International conference on swarm intelligence. Springer, Berlin Bouamama S, Boukerram A, Al-Badarneh AF (2010) Motif finding using ant colony optimization. In: International conference on swarm intelligence. Springer, Berlin
17.
go back to reference Claeys M et al (2012) MotifSuite: workflow for probabilistic motif detection and assessment. Bioinformatics 28(14):1931–932CrossRef Claeys M et al (2012) MotifSuite: workflow for probabilistic motif detection and assessment. Bioinformatics 28(14):1931–932CrossRef
18.
go back to reference Liu X, Brutlag DL, Liu JS (2000) BioProspector: discovering conserved DNA motifs in upstream regulatory regions of co-expressed genes. Biocomputing 2001:127–138 Liu X, Brutlag DL, Liu JS (2000) BioProspector: discovering conserved DNA motifs in upstream regulatory regions of co-expressed genes. Biocomputing 2001:127–138
19.
20.
go back to reference Hu J, Li B, Kihara D (2005) Limitations and potentials of current motif discovery algorithms. Nucleic Acids Res 33(15):4899–4913CrossRef Hu J, Li B, Kihara D (2005) Limitations and potentials of current motif discovery algorithms. Nucleic Acids Res 33(15):4899–4913CrossRef
21.
go back to reference Wingender E et al (1996) TRANSFAC: a database on transcription factors and their DNA binding sites. Nucleic Acids Res 24(1):238–241CrossRef Wingender E et al (1996) TRANSFAC: a database on transcription factors and their DNA binding sites. Nucleic Acids Res 24(1):238–241CrossRef
22.
go back to reference Lam AYS, Li VOK (2012) Chemical reaction optimization: a tutorial. Memet Comput 4(1):3–17CrossRef Lam AYS, Li VOK (2012) Chemical reaction optimization: a tutorial. Memet Comput 4(1):3–17CrossRef
23.
go back to reference Islam MR, Khaled Saifullah CM (2019) Mahmud MR (2019) Chemical reaction optimization: survey on variants. Evolut Intell 12(3):395–420CrossRef Islam MR, Khaled Saifullah CM (2019) Mahmud MR (2019) Chemical reaction optimization: survey on variants. Evolut Intell 12(3):395–420CrossRef
24.
go back to reference Lam AYS, Li VOK, Xu J (2012) On the convergence of chemical reaction optimization for combinatorial optimization. IEEE Trans Evolut Comput 17(5):605–620CrossRef Lam AYS, Li VOK, Xu J (2012) On the convergence of chemical reaction optimization for combinatorial optimization. IEEE Trans Evolut Comput 17(5):605–620CrossRef
25.
go back to reference Chaabani A, Bechikh S, Said LB (2018) A new co-evolutionary decomposition-based algorithm for bi-level combinatorial optimization. Appl Intell 48(9):2847–2872CrossRef Chaabani A, Bechikh S, Said LB (2018) A new co-evolutionary decomposition-based algorithm for bi-level combinatorial optimization. Appl Intell 48(9):2847–2872CrossRef
26.
go back to reference Khaled Saifullah CM, Md Rafiqul I (2016) Chemical reaction optimization for solving shortest common supersequence problem. Comput Biol Chem 64:82–93CrossRef Khaled Saifullah CM, Md Rafiqul I (2016) Chemical reaction optimization for solving shortest common supersequence problem. Comput Biol Chem 64:82–93CrossRef
28.
go back to reference Rayhanul K, Rafiqul I (2019) Chemical reaction optimization for RNA structure prediction. Appl Intell 49(2):352–375CrossRef Rayhanul K, Rafiqul I (2019) Chemical reaction optimization for RNA structure prediction. Appl Intell 49(2):352–375CrossRef
30.
go back to reference Lam AYS, Li VOK (2009) Chemical-reaction-inspired metaheuristic for optimization. IEEE Trans Evolut Comput 14(3):381–399CrossRef Lam AYS, Li VOK (2009) Chemical-reaction-inspired metaheuristic for optimization. IEEE Trans Evolut Comput 14(3):381–399CrossRef
32.
go back to reference Islam MR et al (2019) Optimization of protein folding using chemical reaction optimization in HP cubic lattice model. Neural Comput Appl 32:3117–3134CrossRef Islam MR et al (2019) Optimization of protein folding using chemical reaction optimization in HP cubic lattice model. Neural Comput Appl 32:3117–3134CrossRef
33.
go back to reference Blekas K, Fotiadis DI, Likas A (2003) Greedy mixture learning for multiple motif discovery in biological sequences. Bioinformatics 19(5):607–617CrossRef Blekas K, Fotiadis DI, Likas A (2003) Greedy mixture learning for multiple motif discovery in biological sequences. Bioinformatics 19(5):607–617CrossRef
34.
go back to reference Attwood TK et al (2000) PRINTS-S: the database formerly known as PRINTS. Nucleic Acids Res 28(1):225–227CrossRef Attwood TK et al (2000) PRINTS-S: the database formerly known as PRINTS. Nucleic Acids Res 28(1):225–227CrossRef
36.
go back to reference Stormo GD, Hartzell GW (1989) Identifying protein-binding sites from unaligned DNA fragments. Proc Natl Acad Sci 86(4):1183–1187CrossRef Stormo GD, Hartzell GW (1989) Identifying protein-binding sites from unaligned DNA fragments. Proc Natl Acad Sci 86(4):1183–1187CrossRef
37.
go back to reference Harbison CT et al (2004) Transcriptional regulatory code of a eukaryotic genome. Nature 431(7004):99CrossRef Harbison CT et al (2004) Transcriptional regulatory code of a eukaryotic genome. Nature 431(7004):99CrossRef
38.
go back to reference Roth FP et al (1998) Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. Nat Biotechnol 16(10):939CrossRef Roth FP et al (1998) Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. Nat Biotechnol 16(10):939CrossRef
39.
go back to reference Shao L, Chen Y, Abraham A (2009) Motif discovery using evolutionary algorithms. In: 2009 international conference of soft computing and pattern recognition. IEEE 2009 Shao L, Chen Y, Abraham A (2009) Motif discovery using evolutionary algorithms. In: 2009 international conference of soft computing and pattern recognition. IEEE 2009
40.
go back to reference Zhu J, Zhang MQ (1999) SCPD: a promoter database of the yeast Saccharomyces cerevisiae. Bioinformatics (Oxford, England) 15(7):607–611CrossRef Zhu J, Zhang MQ (1999) SCPD: a promoter database of the yeast Saccharomyces cerevisiae. Bioinformatics (Oxford, England) 15(7):607–611CrossRef
41.
go back to reference Sun J, Zhang Q, Tsang EPK (2005) DE/EDA: a new evolutionary algorithm for global optimization. Inf Sci 169(3–4):249–262MathSciNetCrossRef Sun J, Zhang Q, Tsang EPK (2005) DE/EDA: a new evolutionary algorithm for global optimization. Inf Sci 169(3–4):249–262MathSciNetCrossRef
42.
go back to reference Wolfger H et al (1997) The yeast ATP binding cassette (ABC) protein genes PDR10 and PDR15 are novel targets for the Pdr1 and Pdr3 transcriptional regulators. FEBS Lett 418(3):269–274CrossRef Wolfger H et al (1997) The yeast ATP binding cassette (ABC) protein genes PDR10 and PDR15 are novel targets for the Pdr1 and Pdr3 transcriptional regulators. FEBS Lett 418(3):269–274CrossRef
43.
go back to reference Chan T-M, Leung K-S, Lee K-H (2007) TFBS identification by position-and consensus-led genetic algorithm with local filtering. In: Proceedings of the 9th annual conference on Genetic and evolutionary computation. ACM Chan T-M, Leung K-S, Lee K-H (2007) TFBS identification by position-and consensus-led genetic algorithm with local filtering. In: Proceedings of the 9th annual conference on Genetic and evolutionary computation. ACM
44.
go back to reference Bryne JC et al (2007) JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update. Nucleic Acids Res 36(suppl1):D102–D106CrossRef Bryne JC et al (2007) JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update. Nucleic Acids Res 36(suppl1):D102–D106CrossRef
45.
go back to reference Tompa M et al (2005) (2005) Assessing computational tools for the discovery of transcription factor binding sites. Nat Biotechnol 23(1):137CrossRef Tompa M et al (2005) (2005) Assessing computational tools for the discovery of transcription factor binding sites. Nat Biotechnol 23(1):137CrossRef
Metadata
Title
DNA motif discovery using chemical reaction optimization
Authors
Sumit Kumar Saha
Md. Rafiqul Islam
Mredul Hasan
Publication date
11-07-2020
Publisher
Springer Berlin Heidelberg
Published in
Evolutionary Intelligence / Issue 4/2021
Print ISSN: 1864-5909
Electronic ISSN: 1864-5917
DOI
https://doi.org/10.1007/s12065-020-00444-2

Other articles of this Issue 4/2021

Evolutionary Intelligence 4/2021 Go to the issue

Premium Partner