Skip to main content
Top
Published in: Wireless Personal Communications 2/2017

16-05-2017

Downlink Massive MIMO Systems: Achievable Sum Rates and Energy Efficiency Perspective for Future 5G Systems

Authors: Joseph Isabona, Viranjay M. Srivastava

Published in: Wireless Personal Communications | Issue 2/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

To meet up with the ever increasing subscribers’ demand for higher data rates and mobile data traffic growth in the telecommunication industry, the fifth generation (5G) systems is being considered for the next future cellular communication standards. The two principal design requirements being aimed at in 5G are robust data transmission rates in Gigabits and low power consumption systems. Massive multiple input multiple output (M-MIMO) technology is an evolving smart antenna technology which has some key promising potentials to boost 5G networks in meeting the aforementioned requirements. However, there is an emergent concern that increased number of antenna arrays in M-MIMO system could induce high power consumption and poor energy efficiency when deployed at the base stations (BSs). Also, inter-cellular interference which occurs as a result of pilot contamination, fast fading and uncorrelated noise effects in the radio channels are other open issues in M-MIMO system. This work investigates and compare the achievable sum rates and energy efficiency of a downlink single cell M-MIMO systems utilizing linear and nonlinear precoding schemes. First, we have shown how the increasing signal-to-noise ratio and M-antennas impact the achievable sum rates. Furthermore, the energy saving potentials of M-MIMO systems in macro, micro and pico cellular environments when linear and nonlinear precoding schemes are utilized at the BS have been demonstrated. Particularly, by means of power fairness index, the tradeoff among the energy efficiency, sum rate and the system users have also been presented and discussed. Results show that substantial energy efficiency improvements can be achieved in micro and pico cellular environments of downlink M-MIMO systems when non-linear successive interference cancellation precoding is applied compared to linear precoding schemes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ericson Mobility Report on the Pulse of the Network Society (2016). Revision A (pp. 1–32). Ericson Mobility Report on the Pulse of the Network Society (2016). Revision A (pp. 1–32).
2.
go back to reference Dahlman, E., Parkvall, S., & Beming, P. (2008). 3G evolution HSPA and LTE for mobile broadband (1st ed.). London: Academic Press. Dahlman, E., Parkvall, S., & Beming, P. (2008). 3G evolution HSPA and LTE for mobile broadband (1st ed.). London: Academic Press.
3.
go back to reference Boccardi, F., Clerckx, B., Ghosh, A., Hardouin, E., Jongren, G., Kusume, K., et al. (2012). Multiple-antenna techniques in LTE-advanced. IEEE Communications Magazine, 50(3), 114–121.CrossRef Boccardi, F., Clerckx, B., Ghosh, A., Hardouin, E., Jongren, G., Kusume, K., et al. (2012). Multiple-antenna techniques in LTE-advanced. IEEE Communications Magazine, 50(3), 114–121.CrossRef
4.
go back to reference Suthisopapany, P., Meesomboony, A., Kasaiz, K., & Virasit, I, (2012) Ultra low complexity soft output detector for non-binary LDPC coded large MIMO systems. In International symposium on Turbo codes and iterative information processing (ISTC), Gothenburg (pp. 230–234). Suthisopapany, P., Meesomboony, A., Kasaiz, K., & Virasit, I, (2012) Ultra low complexity soft output detector for non-binary LDPC coded large MIMO systems. In International symposium on Turbo codes and iterative information processing (ISTC), Gothenburg (pp. 230–234).
5.
go back to reference Hiaohu, G., Cheng, H., Guizani, M., & Han, T. (2014). 5G wireless backhaul networks: Challenges and research advances. IEEE Network, 28(6), 6–11.CrossRef Hiaohu, G., Cheng, H., Guizani, M., & Han, T. (2014). 5G wireless backhaul networks: Challenges and research advances. IEEE Network, 28(6), 6–11.CrossRef
6.
go back to reference Marzetta, T. L. (2010). Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Transaction on Wireless Communication., 9(11), 3590–3600.CrossRef Marzetta, T. L. (2010). Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Transaction on Wireless Communication., 9(11), 3590–3600.CrossRef
7.
go back to reference Alrabadi, O. N., Tsakalaki, E., Huang, H., & Pedersen, G. F. (2013). Beamforming via large and dense antenna arrays above a clutter. IEEE Journal on Selected Areas in Communications, 31(2), 314–325.CrossRef Alrabadi, O. N., Tsakalaki, E., Huang, H., & Pedersen, G. F. (2013). Beamforming via large and dense antenna arrays above a clutter. IEEE Journal on Selected Areas in Communications, 31(2), 314–325.CrossRef
8.
go back to reference Taluja, P. S., & Hughes, B. L. (2013). Diversity limits of compact broadband multi-antenna Systems. IEEE Journal on Selected Areas in Communications, 31(2), 326–337.CrossRef Taluja, P. S., & Hughes, B. L. (2013). Diversity limits of compact broadband multi-antenna Systems. IEEE Journal on Selected Areas in Communications, 31(2), 326–337.CrossRef
9.
go back to reference Rusek, F., Persson, D., Lau, B. K., & Larssonet, E. G. (2012). Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30(1), 40–60.CrossRef Rusek, F., Persson, D., Lau, B. K., & Larssonet, E. G. (2012). Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30(1), 40–60.CrossRef
10.
go back to reference Leeand, C., & Chae, C. B. (2012). Network massive MIMO for cell-boundary users: From a Precoding normalization perspective. In International workshop on cloud base-station and large-scale cooperative communications (pp. 233–237). Leeand, C., & Chae, C. B. (2012). Network massive MIMO for cell-boundary users: From a Precoding normalization perspective. In International workshop on cloud base-station and large-scale cooperative communications (pp. 233–237).
11.
go back to reference Hoydis, J., Brink, S. T., & Debbah, M. (2013). Massive MIMO in the UL/DL of cellular networks: How many antennas do we need? IEEE Journal on Selected Areas in Communications, 31(2), 160–171.CrossRef Hoydis, J., Brink, S. T., & Debbah, M. (2013). Massive MIMO in the UL/DL of cellular networks: How many antennas do we need? IEEE Journal on Selected Areas in Communications, 31(2), 160–171.CrossRef
12.
go back to reference Yang, W., Durisi, G., & Riegler, E. (2013). On the capacity of large-MIMO block-fading channels. IEEE Journal on Selected Areas in Communications, 31(2), 117–132.CrossRef Yang, W., Durisi, G., & Riegler, E. (2013). On the capacity of large-MIMO block-fading channels. IEEE Journal on Selected Areas in Communications, 31(2), 117–132.CrossRef
13.
go back to reference Hoydis, J., Hoek, C., Wild, T., & ten Brink, S. (2012). Channel measurements for large antenna arrays. In International symposium on wireless communication systems (ISWCS), Paris (pp. 811–815). Hoydis, J., Hoek, C., Wild, T., & ten Brink, S. (2012). Channel measurements for large antenna arrays. In International symposium on wireless communication systems (ISWCS), Paris (pp. 811–815).
14.
go back to reference Marzetta, T. L. (2015). Massive MIMO: An introduction. Bell Labs Technical Journal, 20, 11–22.CrossRef Marzetta, T. L. (2015). Massive MIMO: An introduction. Bell Labs Technical Journal, 20, 11–22.CrossRef
15.
go back to reference Payami, S., & Tufvesson, F. (2012). Channel measurements and analysis for very large array systems at 2.6 GHz. In 6th European conference on antennas and propagation (EuCAP) 2012, Prague, Czech Republic (pp. 1–5). Payami, S., & Tufvesson, F. (2012). Channel measurements and analysis for very large array systems at 2.6 GHz. In 6th European conference on antennas and propagation (EuCAP) 2012, Prague, Czech Republic (pp. 1–5).
16.
go back to reference Gao, X., Tufvesson, F., Edfors, O., & Rusek, F. (2012). Measured propagation characteristics for very-large MIMO at 2.6 GHz. In Conference on signals, systems and computers (ASILOMAR) (pp. 295–299). Gao, X., Tufvesson, F., Edfors, O., & Rusek, F. (2012). Measured propagation characteristics for very-large MIMO at 2.6 GHz. In Conference on signals, systems and computers (ASILOMAR) (pp. 295–299).
17.
go back to reference Gao, X., Tufvesson, F., & Edfors, O. (2013). Massive MIMO channels—Measurements and models. In Asilomar conference on signals, systems and computers, Pacific Grove, CA (pp. 280–284). Gao, X., Tufvesson, F., & Edfors, O. (2013). Massive MIMO channels—Measurements and models. In Asilomar conference on signals, systems and computers, Pacific Grove, CA (pp. 280–284).
18.
go back to reference Martınez, A. O., De Carvalho, E., & Nielsen, J. O. (2014).Towards very large aperture massive MIMO: A measurement based study. In IEEE Globecom workshops (GC Wkshps), Austin, TX (pp. 281–286). Martınez, A. O., De Carvalho, E., & Nielsen, J. O. (2014).Towards very large aperture massive MIMO: A measurement based study. In IEEE Globecom workshops (GC Wkshps), Austin, TX (pp. 281–286).
19.
go back to reference Gao, X., Edfors. O., & Rusek, F. (2011). Linear pre-coding performance in measured very-large MIMO channels. In IEEE vehicular technology conference (VTC Fall) (pp. 1–5). Gao, X., Edfors. O., & Rusek, F. (2011). Linear pre-coding performance in measured very-large MIMO channels. In IEEE vehicular technology conference (VTC Fall) (pp. 1–5).
20.
go back to reference Yang, H., & Marzetta, T. L. (2011). Performance of conjugate and zero-forcing beamforming in large-scale antenna systems. IEEE Journal on Selected Areas in Communications, 31(2), 172–179.CrossRef Yang, H., & Marzetta, T. L. (2011). Performance of conjugate and zero-forcing beamforming in large-scale antenna systems. IEEE Journal on Selected Areas in Communications, 31(2), 172–179.CrossRef
21.
go back to reference Guthy, C., Utschickand, W., & Honig, M. L. (2010). Large system analysis of the successive encoding successive allocation method for the MIMO BC. In International ITG workshop on smart antennas (WSA) (pp. 226–231). Guthy, C., Utschickand, W., & Honig, M. L. (2010). Large system analysis of the successive encoding successive allocation method for the MIMO BC. In International ITG workshop on smart antennas (WSA) (pp. 226–231).
22.
go back to reference Artigue, C., & Loubaton, P. (2011). On the precoder design of flat fading MIMO systems equipped with MMSE receivers. A large-system approach. IEEE Transactions on Information Theory, 57(7), 4138–4155.MathSciNetCrossRefMATH Artigue, C., & Loubaton, P. (2011). On the precoder design of flat fading MIMO systems equipped with MMSE receivers. A large-system approach. IEEE Transactions on Information Theory, 57(7), 4138–4155.MathSciNetCrossRefMATH
23.
go back to reference Jose, J., Ashikhminand, A., & Marzetta, T. L. (2011). Pilot contamination and precoding in multi-cell TDD systems. IEEE Transactions on Wireless Communications, 10(8), 2640–2651.CrossRef Jose, J., Ashikhminand, A., & Marzetta, T. L. (2011). Pilot contamination and precoding in multi-cell TDD systems. IEEE Transactions on Wireless Communications, 10(8), 2640–2651.CrossRef
24.
go back to reference Appaiah, K., Ashikhminand, A., & Marzetta, T. L. (2010). Pilot contamination reduction in multi-user TDD systems. IEEE international conference on communications (ICC), pp.1–5. Appaiah, K., Ashikhminand, A., & Marzetta, T. L. (2010). Pilot contamination reduction in multi-user TDD systems. IEEE international conference on communications (ICC), pp.1–5.
25.
go back to reference Ashikhminand, A., & Marzetta, T. (2012). Pilot contamination precoding in multi-cell large scale antenna system. In IEEE international symposium on information theory proceedings (pp. 1137–1141). Ashikhminand, A., & Marzetta, T. (2012). Pilot contamination precoding in multi-cell large scale antenna system. In IEEE international symposium on information theory proceedings (pp. 1137–1141).
26.
go back to reference Zhao, L., Zheng, K., Long, H., & Zhao, H. (2014). Performance analysis for downlink massive MIMO system with ZF precoding. Transaction on Emerging Telecommunication Technology, 25, 1219–1230.CrossRef Zhao, L., Zheng, K., Long, H., & Zhao, H. (2014). Performance analysis for downlink massive MIMO system with ZF precoding. Transaction on Emerging Telecommunication Technology, 25, 1219–1230.CrossRef
27.
go back to reference Ngo, H. Q., Larsson, E. G., & Marzetta, T. L. (2013). Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Transactions on Communications, 62(4), 1436–1449. Ngo, H. Q., Larsson, E. G., & Marzetta, T. L. (2013). Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Transactions on Communications, 62(4), 1436–1449.
28.
go back to reference Huh, H., Caire, G., Papadopoulos, H. C., & Ramprashad, S. A. (2012). Achieving massive MIMO spectral efficiency with a not-so-large number of antennas. IEEE Transactions on Wireless Communication, 11(9), 3226–3239.CrossRef Huh, H., Caire, G., Papadopoulos, H. C., & Ramprashad, S. A. (2012). Achieving massive MIMO spectral efficiency with a not-so-large number of antennas. IEEE Transactions on Wireless Communication, 11(9), 3226–3239.CrossRef
30.
go back to reference Li, L. (2013). Advanced channel estimation and detection techniques for MIMO and OFDM systems. Ph.D. thesis, University of York (pp. 1–194). Li, L. (2013). Advanced channel estimation and detection techniques for MIMO and OFDM systems. Ph.D. thesis, University of York (pp. 1–194).
31.
go back to reference Rusek, F., Persson, D., & Lau, B. K. (2013). Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30(1), 40–60.CrossRef Rusek, F., Persson, D., & Lau, B. K. (2013). Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30(1), 40–60.CrossRef
32.
go back to reference Yang, H., & Marzetta, T. L. (2013). Performance of conjugate and zero-forcing beamforming in large-scale antenna system. IEEE Journal on Selected Areas in Communications, 31(2), 172–179.CrossRef Yang, H., & Marzetta, T. L. (2013). Performance of conjugate and zero-forcing beamforming in large-scale antenna system. IEEE Journal on Selected Areas in Communications, 31(2), 172–179.CrossRef
33.
go back to reference Ngo, H. Q. (2015). Massive MIMO: Fundamentals and system designs. Ph.D. thesis, Department of Electrical Engineering, Linkoping University. Ngo, H. Q. (2015). Massive MIMO: Fundamentals and system designs. Ph.D. thesis, Department of Electrical Engineering, Linkoping University.
34.
go back to reference Huang, H., Papadias, C. B., & Venkatesan, S. (2012). MIMO communication for cellular networks. New York, NY: Springer.CrossRef Huang, H., Papadias, C. B., & Venkatesan, S. (2012). MIMO communication for cellular networks. New York, NY: Springer.CrossRef
35.
go back to reference Verdu, S. (1998). Multiuser detection. Cambridge: Cambridge University Press.MATH Verdu, S. (1998). Multiuser detection. Cambridge: Cambridge University Press.MATH
36.
go back to reference Utschick, W., & Josef, A. (2005). Linear transmit processing in MIMO communications systems. IEEE Transactions on Signal Processing, 53(8), 2700–2712.MathSciNetCrossRef Utschick, W., & Josef, A. (2005). Linear transmit processing in MIMO communications systems. IEEE Transactions on Signal Processing, 53(8), 2700–2712.MathSciNetCrossRef
37.
go back to reference Sadek, M., Tarighat, A., & Sayed, A. H. (2007). Active antenna selection in multiuser MIMO communications. IEEE Transactions on Signal Processing, 555(4), 1498–1510.MathSciNetCrossRef Sadek, M., Tarighat, A., & Sayed, A. H. (2007). Active antenna selection in multiuser MIMO communications. IEEE Transactions on Signal Processing, 555(4), 1498–1510.MathSciNetCrossRef
38.
go back to reference Wubben, D., Bohnke, R., Kuhn, V., & Kammeyer, K. D. (2003). MMSE extension of V-BLAST based on sorted QR decomposition. In Vehicular technology conference, VTC 2003-Fall (pp. 508–512). Wubben, D., Bohnke, R., Kuhn, V., & Kammeyer, K. D. (2003). MMSE extension of V-BLAST based on sorted QR decomposition. In Vehicular technology conference, VTC 2003-Fall (pp. 508–512).
39.
go back to reference Mandloi, M., Hussain, M. A., & Bhatia, V. (2016). An improved multiple feedback successive interference cancellation algorithm for MIMO detection. In International conference on communication systems and networks (COMSNETS), Bangalore (pp. 1–6). Mandloi, M., Hussain, M. A., & Bhatia, V. (2016). An improved multiple feedback successive interference cancellation algorithm for MIMO detection. In International conference on communication systems and networks (COMSNETS), Bangalore (pp. 1–6).
40.
go back to reference Kobayashi, R. T., Ciriaco, F., & Abrao, T. (2014). Performance and complexity analysis of sub-optimum MIMO detectors under correlated channel. In Telecommunications symposium (ITS), 2014 international, Sao Paulo (pp. 1–5). Kobayashi, R. T., Ciriaco, F., & Abrao, T. (2014). Performance and complexity analysis of sub-optimum MIMO detectors under correlated channel. In Telecommunications symposium (ITS), 2014 international, Sao Paulo (pp. 1–5).
41.
go back to reference Tse, D., & Viswanath, P. (2004). Fundamental of wireless communications. Cambridge University Press. ISBN-10: 0521845270. Tse, D., & Viswanath, P. (2004). Fundamental of wireless communications. Cambridge University Press. ISBN-10: 0521845270.
42.
go back to reference Auer, G., Blume, O., Giannini, Z., Godor, I., Imran, M. A., Jading, Y., et al. (2012). D2.3: Energy efficiency analysis of the reference systems, areas of improvements and target breakdown. In INFSO-ICT-247733 energy aware radio and network technologies (pp. 1–68). Auer, G., Blume, O., Giannini, Z., Godor, I., Imran, M. A., Jading, Y., et al. (2012). D2.3: Energy efficiency analysis of the reference systems, areas of improvements and target breakdown. In INFSO-ICT-247733 energy aware radio and network technologies (pp. 1–68).
43.
go back to reference Quek, T. Q. S., Cheung, W. C., & Kountouris, M. (2011). Energy efficiency analysis of two-tier heterogeneous networks. In Proceedings of wireless conference on sustainable wireless technologies (pp. 1–5). Quek, T. Q. S., Cheung, W. C., & Kountouris, M. (2011). Energy efficiency analysis of two-tier heterogeneous networks. In Proceedings of wireless conference on sustainable wireless technologies (pp. 1–5).
44.
go back to reference Chang, L., Zhang, J., & Letaief, K. B. (2013). Energy efficiency analysis of small cell networks. In IEEE ICC selected areas in communications symposium (pp. 4404–4408). Chang, L., Zhang, J., & Letaief, K. B. (2013). Energy efficiency analysis of small cell networks. In IEEE ICC selected areas in communications symposium (pp. 4404–4408).
45.
go back to reference Bohli, A., & Bouallegue, R. (2014). Energy efficiency in heterogeneous wireless networks using cognitive monitoring strategy. In Modelling symposium (EMS), 2014 European, Pisa, 2014 (pp. 387–391). Bohli, A., & Bouallegue, R. (2014). Energy efficiency in heterogeneous wireless networks using cognitive monitoring strategy. In Modelling symposium (EMS), 2014 European, Pisa, 2014 (pp. 387–391).
46.
go back to reference Beh, K. C., Han, C., Nicolaou, M., Armour, S., & Doufexi, A. (2009). Power efficient MIMO techniques for 3GPP LTE and beyond. In Vehicular technology conference fall (VTC 2009-Fall), Anchorage, AK (pp. 1–5). Beh, K. C., Han, C., Nicolaou, M., Armour, S., & Doufexi, A. (2009). Power efficient MIMO techniques for 3GPP LTE and beyond. In Vehicular technology conference fall (VTC 2009-Fall), Anchorage, AK (pp. 1–5).
Metadata
Title
Downlink Massive MIMO Systems: Achievable Sum Rates and Energy Efficiency Perspective for Future 5G Systems
Authors
Joseph Isabona
Viranjay M. Srivastava
Publication date
16-05-2017
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 2/2017
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-017-4324-y

Other articles of this Issue 2/2017

Wireless Personal Communications 2/2017 Go to the issue