Skip to main content
Top

2018 | OriginalPaper | Chapter

DTI-RCNN: New Efficient Hybrid Neural Network Model to Predict Drug–Target Interactions

Authors : Xiaoping Zheng, Song He, Xinyu Song, Zhongnan Zhang, Xiaochen Bo

Published in: Artificial Neural Networks and Machine Learning – ICANN 2018

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Drug-target interactions (DTIs) are a critical step in the technology of new drugs discovery and drug repositioning. Various computational algorithms have been developed to discover new DTIs, whereas the prediction accuracy is not very satisfactory. Most existing computational methods are based on homogeneous networks or on integrating multiple data sources, without considering the feature associations between gene and drug data. In this paper, we proposed a deep-learning-based hybrid model, DTI-RCNN, which integrates long short term memory (LSTM) networks with convolutional neural network (CNN) to further improve DTIs prediction accuracy using the drug data and gene data. First, we extracted potential semantic information between gene data and drug data via a LSTM network. We then constructed a CNN to extract the loci knowledge in the LSTM outputs. Finally, a fully connected network was used for prediction. The results comparison shows that the proposed model exhibits better performance. More importantly, DTI-RCNN is stable and efficient in predicting novel DTIs. Therefore, it should help select candidate DTIs, and further promote the development of drug repositioning.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Whitebread, S., Hamon, J., Bojanic, D., et al.: Keynote review: in vitro safety pharmacology profiling: an essential tool for successful drug development. Drug Discov. Today 10(21), 1421–1433 (2005)CrossRef Whitebread, S., Hamon, J., Bojanic, D., et al.: Keynote review: in vitro safety pharmacology profiling: an essential tool for successful drug development. Drug Discov. Today 10(21), 1421–1433 (2005)CrossRef
2.
go back to reference Dobson, C.M.: Chemical space and biology. Nature 432(7019), 824–828 (2005)CrossRef Dobson, C.M.: Chemical space and biology. Nature 432(7019), 824–828 (2005)CrossRef
3.
go back to reference Fakhraei, S., Huang, B., Raschid, L., et al.: Network-based drug-target interaction prediction with probabilistic soft logic. IEEE/ACM Trans. Comput. Biol. Bioinform. 11(5), 775–787 (2014)CrossRef Fakhraei, S., Huang, B., Raschid, L., et al.: Network-based drug-target interaction prediction with probabilistic soft logic. IEEE/ACM Trans. Comput. Biol. Bioinform. 11(5), 775–787 (2014)CrossRef
4.
go back to reference Bleakley, K., Yamanishi, Y.: Supervised prediction of drug-target interactions using bipartite local models. Bioinformatics 25(18), 2397–2403 (2009)CrossRef Bleakley, K., Yamanishi, Y.: Supervised prediction of drug-target interactions using bipartite local models. Bioinformatics 25(18), 2397–2403 (2009)CrossRef
5.
go back to reference Mei, J.P., Kwoh, C.K., Yang, P., et al.: Drug-target interaction prediction by learning from local information and neighbors. Bioinformatics 29(2), 238–245 (2013)CrossRef Mei, J.P., Kwoh, C.K., Yang, P., et al.: Drug-target interaction prediction by learning from local information and neighbors. Bioinformatics 29(2), 238–245 (2013)CrossRef
6.
go back to reference Van Laarhoven, T., Nabuurs, S.B., Marchiori, E.: Gaussian Interaction Profile Kernels for Predicting Drug-Target Interaction. Oxford University Press, Oxford (2011) Van Laarhoven, T., Nabuurs, S.B., Marchiori, E.: Gaussian Interaction Profile Kernels for Predicting Drug-Target Interaction. Oxford University Press, Oxford (2011)
7.
go back to reference Laarhoven, T.V., Marchiori, E.: Predicting drug-target interactions for new drug compounds using a weighted nearest neighbor profile. PLoS ONE 8(6), e66952 (2013)CrossRef Laarhoven, T.V., Marchiori, E.: Predicting drug-target interactions for new drug compounds using a weighted nearest neighbor profile. PLoS ONE 8(6), e66952 (2013)CrossRef
8.
go back to reference Wang, Y., Zeng, J.: Predicting drug-target interactions using restricted Boltzmann machines. Bioinformatics 29(13), 126–134 (2013)CrossRef Wang, Y., Zeng, J.: Predicting drug-target interactions using restricted Boltzmann machines. Bioinformatics 29(13), 126–134 (2013)CrossRef
9.
go back to reference Wen, M., Zhang, Z., Niu, S., et al.: Deep-learning-based drug-target interaction prediction. J. Proteome Res. 16(4), 1401 (2017)CrossRef Wen, M., Zhang, Z., Niu, S., et al.: Deep-learning-based drug-target interaction prediction. J. Proteome Res. 16(4), 1401 (2017)CrossRef
10.
go back to reference Unterthiner, T., Mayr, A., Klambauer, G., et al.: Deep learning for drug target prediction. In: Conference Neural Information Processing Systems Foundation, NIPS 2014, Workshop on Representation and Learning Methods for Complex Outputs (2014) Unterthiner, T., Mayr, A., Klambauer, G., et al.: Deep learning for drug target prediction. In: Conference Neural Information Processing Systems Foundation, NIPS 2014, Workshop on Representation and Learning Methods for Complex Outputs (2014)
11.
go back to reference Gaulton, A., Bellis, L.J., Bento, A.P., et al.: ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. 40(Database issue), 1100–1107 (2012)CrossRef Gaulton, A., Bellis, L.J., Bento, A.P., et al.: ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. 40(Database issue), 1100–1107 (2012)CrossRef
12.
go back to reference Duan, Q., Flynn, C., Niepel, M., et al.: LINCS Canvas Browser: interactive web app to query, browse and interrogate LINCS L1000 gene expression signatures. Nucleic Acids Res. 42(Web Server issue), W449 (2014)CrossRef Duan, Q., Flynn, C., Niepel, M., et al.: LINCS Canvas Browser: interactive web app to query, browse and interrogate LINCS L1000 gene expression signatures. Nucleic Acids Res. 42(Web Server issue), W449 (2014)CrossRef
13.
go back to reference Xie, L., Zhang, Z., He, S., et al.: Drug—Target interaction prediction with a deep-learning-based model. In: IEEE International Conference on Bioinformatics and Biomedicine, pp. 469–476. IEEE Computer Society (2017) Xie, L., Zhang, Z., He, S., et al.: Drug—Target interaction prediction with a deep-learning-based model. In: IEEE International Conference on Bioinformatics and Biomedicine, pp. 469–476. IEEE Computer Society (2017)
14.
go back to reference Peck, D., Crawford, E.D., Ross, K.N., et al.: A method for high-throughput gene expression signature analysis. Genome Biol. 7(7), R61 (2006)CrossRef Peck, D., Crawford, E.D., Ross, K.N., et al.: A method for high-throughput gene expression signature analysis. Genome Biol. 7(7), R61 (2006)CrossRef
15.
go back to reference Law, V., Knox, C., Djoumbou, Y., et al.: DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res. 42(Database issue), 1091–1097 (2014)CrossRef Law, V., Knox, C., Djoumbou, Y., et al.: DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res. 42(Database issue), 1091–1097 (2014)CrossRef
16.
go back to reference Medsker, L.R., Jain, L.C.: Recurrent Neural Networks. Design and Applications, vol. 5. CRC Press, Boca Raton (2001) Medsker, L.R., Jain, L.C.: Recurrent Neural Networks. Design and Applications, vol. 5. CRC Press, Boca Raton (2001)
17.
go back to reference Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRef Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRef
18.
go back to reference Liu, S., Tang, B., Chen, Q., et al.: Drug-drug interaction extraction via convolutional neural networks. Comput. Math. Methods Med. 2016, Article no. 6918381 (2016) Liu, S., Tang, B., Chen, Q., et al.: Drug-drug interaction extraction via convolutional neural networks. Comput. Math. Methods Med. 2016, Article no. 6918381 (2016)
19.
go back to reference Davis, A.P., King, B.L., Mockus, S., et al.: the comparative toxicogenomics database: update 2011. Nucleic Acids Res. 41(Database issue), D1104–D1114 (2011) Davis, A.P., King, B.L., Mockus, S., et al.: the comparative toxicogenomics database: update 2011. Nucleic Acids Res. 41(Database issue), D1104–D1114 (2011)
Metadata
Title
DTI-RCNN: New Efficient Hybrid Neural Network Model to Predict Drug–Target Interactions
Authors
Xiaoping Zheng
Song He
Xinyu Song
Zhongnan Zhang
Xiaochen Bo
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-030-01418-6_11

Premium Partner