Skip to main content
Top

2015 | OriginalPaper | Chapter

26. Ductile Failure Modeling: Stress Dependence, Non-locality and Damage to Fracture Transition

Authors : J. M. A. Cesar de Sa, F. M. A. Pires, F. X. C. Andrade, L. Malcher, M. R. R. Seabra

Published in: Handbook of Damage Mechanics

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter, some recent developments and proposals for improvement of material models at the constitutive level to deal with ductile damage at large plastic strains are addressed. Numerical tests are carried out to test their performance on shear-dominated stress states where their main differences lie. Subsequently, aspects of the use of nonlocal models for the regularization of the numerical values associated with damage models, namely, discretization dependency, are reviewed. Different approaches on the choice of the regulation variable or variables are tested at different stress states characterized by different values of triaxiality and third invariant of the deviatoric stress tensor. Finally, a simple strategy on how to handle the transition from damage to fracture by means of the extended finite element method is described.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Y. Abdelaziz, A. Hamouine, A survey of the extended finite element. Comput. Struct. 86(11–12), 1141–1151 (2008)CrossRef Y. Abdelaziz, A. Hamouine, A survey of the extended finite element. Comput. Struct. 86(11–12), 1141–1151 (2008)CrossRef
go back to reference J. Alfaiate, G. Wells, L. Sluys, On the use of embedded discontinuity elements with crack path continuity for mode-I and mixed-mode fracture. Eng. Fract. Mech. 69(6), 661–686 (2002)CrossRef J. Alfaiate, G. Wells, L. Sluys, On the use of embedded discontinuity elements with crack path continuity for mode-I and mixed-mode fracture. Eng. Fract. Mech. 69(6), 661–686 (2002)CrossRef
go back to reference F.X.C. Andrade, Non-local modelling of ductile damage: formulation and numerical issues. PhD Thesis, Faculty of Engineering, University of Porto, Porto, Portugal, 2011 F.X.C. Andrade, Non-local modelling of ductile damage: formulation and numerical issues. PhD Thesis, Faculty of Engineering, University of Porto, Porto, Portugal, 2011
go back to reference F.X.C. Andrade, F.M. Andrade Pires, J.M.A. Cesar de Sa, L. Malcher, Nonlocal integral formulation for a plasticity-induced damage model. Comput. Methods Mater. Sci. 9(1), 49–54 (2009) F.X.C. Andrade, F.M. Andrade Pires, J.M.A. Cesar de Sa, L. Malcher, Nonlocal integral formulation for a plasticity-induced damage model. Comput. Methods Mater. Sci. 9(1), 49–54 (2009)
go back to reference F. Andrade, J. Cesar de Sa, F. Andrade Pires, A ductile damage nonlocal model of integral-type at finite strains: formulation and numerical issues. Int. J. Damage Mech. 20, 515–557 (2011b)CrossRef F. Andrade, J. Cesar de Sa, F. Andrade Pires, A ductile damage nonlocal model of integral-type at finite strains: formulation and numerical issues. Int. J. Damage Mech. 20, 515–557 (2011b)CrossRef
go back to reference P. Areias, N. Van Goethem, E. Pires, A damage model for ductile crack initiation and propagation. Comput. Mech. 47, 641–656 (2011)MathSciNetCrossRefMATH P. Areias, N. Van Goethem, E. Pires, A damage model for ductile crack initiation and propagation. Comput. Mech. 47, 641–656 (2011)MathSciNetCrossRefMATH
go back to reference F. Armero, K. Garikipati, An analysis of strong discontinuities in multiplicative finite strain plasticity and their relation with the numerical simulation of strain localization in solids. Int. J. Solids Struct. 33(20–22), 2863–2885 (1996)MathSciNetCrossRefMATH F. Armero, K. Garikipati, An analysis of strong discontinuities in multiplicative finite strain plasticity and their relation with the numerical simulation of strain localization in solids. Int. J. Solids Struct. 33(20–22), 2863–2885 (1996)MathSciNetCrossRefMATH
go back to reference A.G. Atkins, Possible explanation for unexpected departures in hydrostatic tension-fracture strain relations. Metal Sci. 15, 81–83 (1981)CrossRef A.G. Atkins, Possible explanation for unexpected departures in hydrostatic tension-fracture strain relations. Metal Sci. 15, 81–83 (1981)CrossRef
go back to reference Y. Bai, Effect of loading history on necking and fracture. PhD Thesis, Massachusetts Institute of Technology, 2008 Y. Bai, Effect of loading history on necking and fracture. PhD Thesis, Massachusetts Institute of Technology, 2008
go back to reference Y. Bai, T. Wierzbicki, A new model of metal plasticity and fracture with pressure and Lode dependence. Int. J. Plast. 24, 1071–1096 (2008)CrossRefMATH Y. Bai, T. Wierzbicki, A new model of metal plasticity and fracture with pressure and Lode dependence. Int. J. Plast. 24, 1071–1096 (2008)CrossRefMATH
go back to reference Y. Bao, Prediction of ductile crack formation in uncracked bodies. PhD Thesis, Massachusetts Institute of Technology, 2003 Y. Bao, Prediction of ductile crack formation in uncracked bodies. PhD Thesis, Massachusetts Institute of Technology, 2003
go back to reference Y. Bao, T. Wierzbicki, On fracture locus in the equivalent strain and stress triaxiality space. Int. J. Mech. Sci. 46(81), 81–98 (2004)CrossRef Y. Bao, T. Wierzbicki, On fracture locus in the equivalent strain and stress triaxiality space. Int. J. Mech. Sci. 46(81), 81–98 (2004)CrossRef
go back to reference I. Barsoum, J. Faleskog, Rupture in combined tension and shear: experiments. Int. J. Solids Struct. 44, 1768–1786 (2007a)CrossRefMATH I. Barsoum, J. Faleskog, Rupture in combined tension and shear: experiments. Int. J. Solids Struct. 44, 1768–1786 (2007a)CrossRefMATH
go back to reference I. Barsoum, J. Faleskog, Rupture in combined tension and shear: micromechanics. Int. J. Solids Struct. 44, 5481–5498 (2007b)CrossRefMATH I. Barsoum, J. Faleskog, Rupture in combined tension and shear: micromechanics. Int. J. Solids Struct. 44, 5481–5498 (2007b)CrossRefMATH
go back to reference S.R. Beissel, G.R. Johnson, C.H. Popelar, An element-failure algorithm for dynamic crack propagation in general directions. Eng. Fract. Mech. 61(3–4), 407–425 (1998)CrossRef S.R. Beissel, G.R. Johnson, C.H. Popelar, An element-failure algorithm for dynamic crack propagation in general directions. Eng. Fract. Mech. 61(3–4), 407–425 (1998)CrossRef
go back to reference T. Belytschko, T. Black, Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 45, 601–620 (1999)MathSciNetCrossRefMATH T. Belytschko, T. Black, Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 45, 601–620 (1999)MathSciNetCrossRefMATH
go back to reference T. Belytschko, J. Fish, B.E. Engelmann, A finite element with embedded localization zones. Comput. Methods Appl. Mech. Eng. 70(1), 59–89 (1988)CrossRefMATH T. Belytschko, J. Fish, B.E. Engelmann, A finite element with embedded localization zones. Comput. Methods Appl. Mech. Eng. 70(1), 59–89 (1988)CrossRefMATH
go back to reference T. Belytschko, W.K. Liu, B. Moran, Nonlinear Finite Elements for Continua and Structures (Wiley, Chichester, 2000)MATH T. Belytschko, W.K. Liu, B. Moran, Nonlinear Finite Elements for Continua and Structures (Wiley, Chichester, 2000)MATH
go back to reference E. Benvenuti, A regularized XFEM framework for embedded cohesive interfaces. Comput. Methods Appl. Mech. Eng. 197, 4367–4607 (2008)CrossRefMATH E. Benvenuti, A regularized XFEM framework for embedded cohesive interfaces. Comput. Methods Appl. Mech. Eng. 197, 4367–4607 (2008)CrossRefMATH
go back to reference E. Benvenuti, A. Tralli, Iterative LCP solver for non-local loading unloading conditions. Int. J. Numer. Methods Eng. 58, 2343–2370 (2003)MathSciNetCrossRefMATH E. Benvenuti, A. Tralli, Iterative LCP solver for non-local loading unloading conditions. Int. J. Numer. Methods Eng. 58, 2343–2370 (2003)MathSciNetCrossRefMATH
go back to reference G. Borino, P. Fuschi, C. Polizzotto, A thermodynamic approach to nonlocal plasticity and related variational principles. J. Appl. Mech. 66, 952–963 (1999)CrossRef G. Borino, P. Fuschi, C. Polizzotto, A thermodynamic approach to nonlocal plasticity and related variational principles. J. Appl. Mech. 66, 952–963 (1999)CrossRef
go back to reference P.O. Bouchard, F. Bay, Y. Chastel, I. Tovena, Crack propagation modelling using an advanced remeshing technique. Comput. Methods Appl. Mech. Eng. 189(3), 723–742 (2000)CrossRefMATH P.O. Bouchard, F. Bay, Y. Chastel, I. Tovena, Crack propagation modelling using an advanced remeshing technique. Comput. Methods Appl. Mech. Eng. 189(3), 723–742 (2000)CrossRefMATH
go back to reference P.W. Bridgman, Studies in Large Plastic Flow and Fracture (McGraw-Hill Book, New-York, 1952)MATH P.W. Bridgman, Studies in Large Plastic Flow and Fracture (McGraw-Hill Book, New-York, 1952)MATH
go back to reference M. Brünig, S. Berger, H. Obrecht, Numerical simulation of the localization behavior of hydrostatic-stress-sensitive metals. Int. J. Mech. Sci. 42, 2147–2166 (2008)CrossRef M. Brünig, S. Berger, H. Obrecht, Numerical simulation of the localization behavior of hydrostatic-stress-sensitive metals. Int. J. Mech. Sci. 42, 2147–2166 (2008)CrossRef
go back to reference M. Brunig, O. Chyra, D. Albrecht, L. Driemeier, M. Alves, A ductile damage criterion at various stress triaxialities. Int. J. Plast. 24, 1731–1755 (2008)CrossRef M. Brunig, O. Chyra, D. Albrecht, L. Driemeier, M. Alves, A ductile damage criterion at various stress triaxialities. Int. J. Plast. 24, 1731–1755 (2008)CrossRef
go back to reference F. Cazes, M. Coret, A. Combescure, A. Gravouil, A thermodynamic method for the construction of a cohesive law from a non local damage model. Int. J. Solids Struct. 46, 1476–1490 (2009)CrossRefMATH F. Cazes, M. Coret, A. Combescure, A. Gravouil, A thermodynamic method for the construction of a cohesive law from a non local damage model. Int. J. Solids Struct. 46, 1476–1490 (2009)CrossRefMATH
go back to reference F. Cazes, A. Simatos, M. Coret, A. Combescure, A cohesive zone model which is energetically equivalent to a gradient-enhanced coupled damage-plasticity model. Eur. J. Mech. A/Solids 29, 976–998 (2010)MathSciNetCrossRef F. Cazes, A. Simatos, M. Coret, A. Combescure, A cohesive zone model which is energetically equivalent to a gradient-enhanced coupled damage-plasticity model. Eur. J. Mech. A/Solids 29, 976–998 (2010)MathSciNetCrossRef
go back to reference J.M.A. Cesar de Sa, P.M.A. Areias, C. Zheng, Damage modelling in metal forming problems using an implicit non-local gradient model. Comput. Methods Appl. Mech. Eng. 195, 6646–6660 (2006)CrossRefMATH J.M.A. Cesar de Sa, P.M.A. Areias, C. Zheng, Damage modelling in metal forming problems using an implicit non-local gradient model. Comput. Methods Appl. Mech. Eng. 195, 6646–6660 (2006)CrossRefMATH
go back to reference J.M.A. Cesar de Sa, F.M. Andrade Pires, F.X.C. Andrade, Local and nonlocal modeling of ductile damage, in Advanced Computational Materials Modelling: From Classical to Multi-Scale Techniques, ed. by M. Vaz Jr., E.A. De Souza Neto, P.A. Muñoz-Rojas (Wiley-VCH, Weinheim, 2010) J.M.A. Cesar de Sa, F.M. Andrade Pires, F.X.C. Andrade, Local and nonlocal modeling of ductile damage, in Advanced Computational Materials Modelling: From Classical to Multi-Scale Techniques, ed. by M. Vaz Jr., E.A. De Souza Neto, P.A. Muñoz-Rojas (Wiley-VCH, Weinheim, 2010)
go back to reference J.L. Chaboche, M. Boudifa, K.A. Saanouni, CDM approach of ductile damage with plastic compressibility. Int. J. Fract. 137, 51–75 (2006)CrossRefMATH J.L. Chaboche, M. Boudifa, K.A. Saanouni, CDM approach of ductile damage with plastic compressibility. Int. J. Fract. 137, 51–75 (2006)CrossRefMATH
go back to reference T.P. Chang, Z.P. Bazant, Instability of nonlocal continuum and strain averaging. J. Eng. Mech. ASCE 110, 1441–1450 (1984)CrossRef T.P. Chang, Z.P. Bazant, Instability of nonlocal continuum and strain averaging. J. Eng. Mech. ASCE 110, 1441–1450 (1984)CrossRef
go back to reference J. Chessa, H. Wang, T. Belytschko, On the construction of blending elements for local partition of unity enriched finite elements. Int. J. Numer. Methods Eng. 57, 1015–1038 (2003)CrossRefMATH J. Chessa, H. Wang, T. Belytschko, On the construction of blending elements for local partition of unity enriched finite elements. Int. J. Numer. Methods Eng. 57, 1015–1038 (2003)CrossRefMATH
go back to reference M.G. Cockcroft, D.J. Latham, Ductility and workability of metals. J. Inst. Metals 96, 33–39 (1968) M.G. Cockcroft, D.J. Latham, Ductility and workability of metals. J. Inst. Metals 96, 33–39 (1968)
go back to reference J.A. Cottrell, T. Hughes, Y. Bazilevs, Isogeometric Analysis – Toward Integration of CAD and FEA (Wiley, Chichester, 2009)CrossRef J.A. Cottrell, T. Hughes, Y. Bazilevs, Isogeometric Analysis – Toward Integration of CAD and FEA (Wiley, Chichester, 2009)CrossRef
go back to reference J. Datsko, Material Properties and Manufacturing Process (Wiley, New York, 1966) J. Datsko, Material Properties and Manufacturing Process (Wiley, New York, 1966)
go back to reference R. De Borst, H. Mühlhaus, Gradient-dependent plasticity: formulation and algorithmic aspects. Int. J. Numer. Methods Eng. 35, 521–539 (1992)CrossRefMATH R. De Borst, H. Mühlhaus, Gradient-dependent plasticity: formulation and algorithmic aspects. Int. J. Numer. Methods Eng. 35, 521–539 (1992)CrossRefMATH
go back to reference E.A. De Souza Neto, D. Peric, D.R.J. Owen, Computational Methods for Plasticity: Theory and Applications (Wiley, Chichester, 2008)CrossRef E.A. De Souza Neto, D. Peric, D.R.J. Owen, Computational Methods for Plasticity: Theory and Applications (Wiley, Chichester, 2008)CrossRef
go back to reference J.H.P. De Vree, W.A.M. Brekelmans, M.A.J. van Gils, Comparison of nonlocal approaches in continuum damage mechanics. Comput. Struct. 4, 581–588 (1995)CrossRef J.H.P. De Vree, W.A.M. Brekelmans, M.A.J. van Gils, Comparison of nonlocal approaches in continuum damage mechanics. Comput. Struct. 4, 581–588 (1995)CrossRef
go back to reference L. Driemeier, M. Brünig, G. Micheli, M. Alves, Experiments on stress-triaxiality dependence of material behavior of aluminum alloys. Mech. Mater. 42(2), 207–217 (2010)CrossRef L. Driemeier, M. Brünig, G. Micheli, M. Alves, Experiments on stress-triaxiality dependence of material behavior of aluminum alloys. Mech. Mater. 42(2), 207–217 (2010)CrossRef
go back to reference D. Edelen, N. Laws, On the thermodynamics of systems with nonlocality. Arch. Ration. Mech. Anal. 43, 24–35 (1971)MathSciNetMATH D. Edelen, N. Laws, On the thermodynamics of systems with nonlocality. Arch. Ration. Mech. Anal. 43, 24–35 (1971)MathSciNetMATH
go back to reference D. Edelen, A. Green, N. Laws, Nonlocal continuum mechanics. Arch. Ration. Mech. Anal. 43, 36–44 (1971)MathSciNetMATH D. Edelen, A. Green, N. Laws, Nonlocal continuum mechanics. Arch. Ration. Mech. Anal. 43, 36–44 (1971)MathSciNetMATH
go back to reference K. Enakousta, J.B. Leblond, G. Perrin, Numerical implementation and assessment of a phenomenological nonlocal model of ductile rupture. Comput. Methods Appl. Mech. Eng. 196, 1946–1957 (2007)CrossRef K. Enakousta, J.B. Leblond, G. Perrin, Numerical implementation and assessment of a phenomenological nonlocal model of ductile rupture. Comput. Methods Appl. Mech. Eng. 196, 1946–1957 (2007)CrossRef
go back to reference R. Engelen, M. Geers, R. Ubachs, Nonlocal implicit gradient-enhanced elasto-plasticity for the modelling of softening behaviour. Int. J. Plast. 19(4), 403–433 (2003)CrossRefMATH R. Engelen, M. Geers, R. Ubachs, Nonlocal implicit gradient-enhanced elasto-plasticity for the modelling of softening behaviour. Int. J. Plast. 19(4), 403–433 (2003)CrossRefMATH
go back to reference M. Fagerstrom, R. Larsson, A thermo-mechanical cohesive zone formulation for ductile fracture. J. Mech. Phys. Solids 56(10), 3037–3058 (2008)MathSciNetCrossRef M. Fagerstrom, R. Larsson, A thermo-mechanical cohesive zone formulation for ductile fracture. J. Mech. Phys. Solids 56(10), 3037–3058 (2008)MathSciNetCrossRef
go back to reference M. Feucht, Ein gradientenabhangiges Gursonmodell zur Beschreibung duktiler Schadigung mit Entfestigung. PhD Thesis, Technische Universitat Darmstadt, 1999 M. Feucht, Ein gradientenabhangiges Gursonmodell zur Beschreibung duktiler Schadigung mit Entfestigung. PhD Thesis, Technische Universitat Darmstadt, 1999
go back to reference A.M. Freudenthal, The Inelastic Behaviour of Engineering Materials and Structures (Wiley, New York, 1950) A.M. Freudenthal, The Inelastic Behaviour of Engineering Materials and Structures (Wiley, New York, 1950)
go back to reference T.-P. Fries, A corrected XFEM approximation without problems in blending elements. Int. J. Numer. Methods Eng. 75, 503–532 (2008)MathSciNetCrossRefMATH T.-P. Fries, A corrected XFEM approximation without problems in blending elements. Int. J. Numer. Methods Eng. 75, 503–532 (2008)MathSciNetCrossRefMATH
go back to reference T.-P. Fries, T. Belytschko, The extended/generalized finite element method: an overview of the method and its applications. Int. J. Numer. Methods Eng. 84, 253–304 (2010)MathSciNetMATH T.-P. Fries, T. Belytschko, The extended/generalized finite element method: an overview of the method and its applications. Int. J. Numer. Methods Eng. 84, 253–304 (2010)MathSciNetMATH
go back to reference X. Gao, J. Kim, Modeling of ductile fracture: significance of void coalescence. Int. J. Solids Struct. 43, 6277–6293 (2006)CrossRefMATH X. Gao, J. Kim, Modeling of ductile fracture: significance of void coalescence. Int. J. Solids Struct. 43, 6277–6293 (2006)CrossRefMATH
go back to reference X. Gao, T. Wang, J. Kim, On ductile fracture initiation toughness: effects of void volume fraction, void shape and void distribution. Int. J. Solids Struct. 42, 5097–5117 (2005)CrossRefMATH X. Gao, T. Wang, J. Kim, On ductile fracture initiation toughness: effects of void volume fraction, void shape and void distribution. Int. J. Solids Struct. 42, 5097–5117 (2005)CrossRefMATH
go back to reference X. Gao, G. Zhang, C. Roe, A study on the effect of the stress state on ductile fracture. Int. J. Damage Mech. 19, 75–94 (2009) X. Gao, G. Zhang, C. Roe, A study on the effect of the stress state on ductile fracture. Int. J. Damage Mech. 19, 75–94 (2009)
go back to reference X. Gao, T. Zhang, J. Zhou, S.M. Graham, M. Hayden, C. Roe, On stress-state dependent plasticity modeling: significance of the hydrostatic stress, the third invariant of stress deviator and the non-associated flow rule. Int. J. Plast. 27(2), 217–231 (2011)CrossRef X. Gao, T. Zhang, J. Zhou, S.M. Graham, M. Hayden, C. Roe, On stress-state dependent plasticity modeling: significance of the hydrostatic stress, the third invariant of stress deviator and the non-associated flow rule. Int. J. Plast. 27(2), 217–231 (2011)CrossRef
go back to reference A.L. Gurson, Continuum theory of ductile rupture by void nucleation and growth – Part I. Yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol. 99, 2–15 (1977)CrossRef A.L. Gurson, Continuum theory of ductile rupture by void nucleation and growth – Part I. Yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol. 99, 2–15 (1977)CrossRef
go back to reference P. Hakansson, M. Wallin, M. Ristinmaa, Thermomechanical response of non-local porous material. Int. J. Plast. 22, 2066–2090 (2006)CrossRefMATH P. Hakansson, M. Wallin, M. Ristinmaa, Thermomechanical response of non-local porous material. Int. J. Plast. 22, 2066–2090 (2006)CrossRefMATH
go back to reference J.W. Hancock, A.C. Mackenzie, On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states. J. Mech. Phys. Solids 24, 147–160 (1976)CrossRef J.W. Hancock, A.C. Mackenzie, On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states. J. Mech. Phys. Solids 24, 147–160 (1976)CrossRef
go back to reference A. Huespe, A. Needleman, J. Oliver, P.J. Sanchez, A finite strain, finite band method for modeling ductile fracture. Int. J. Plast. 28(1), 53–69 (2012)CrossRef A. Huespe, A. Needleman, J. Oliver, P.J. Sanchez, A finite strain, finite band method for modeling ductile fracture. Int. J. Plast. 28(1), 53–69 (2012)CrossRef
go back to reference M. Jirasek, Comparative study on finite elements with embedded discontinuities. Comput. Methods Appl. Mech. Eng. 188(1–3), 307–330 (2000)CrossRefMATH M. Jirasek, Comparative study on finite elements with embedded discontinuities. Comput. Methods Appl. Mech. Eng. 188(1–3), 307–330 (2000)CrossRefMATH
go back to reference M. Jirásek, Nonlocal damage mechanics. Revue Européene de Génie Civil 11, 993–1021 (2007)CrossRef M. Jirásek, Nonlocal damage mechanics. Revue Européene de Génie Civil 11, 993–1021 (2007)CrossRef
go back to reference M. Jirásek, S. Rolshoven, Comparison of integral-type nonlocal plasticity models for strain-softening materials. Int. J. Eng. Sci. 41, 1553–1602 (2003)CrossRefMATH M. Jirásek, S. Rolshoven, Comparison of integral-type nonlocal plasticity models for strain-softening materials. Int. J. Eng. Sci. 41, 1553–1602 (2003)CrossRefMATH
go back to reference M. Jirasek, T. Zimmermann, Analysis of rotating crack model. J. Eng. Mech., ASCE 124, 842–851 (1998)CrossRef M. Jirasek, T. Zimmermann, Analysis of rotating crack model. J. Eng. Mech., ASCE 124, 842–851 (1998)CrossRef
go back to reference G.R. Johnson, W.H. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 21(1), 31–48 (1985)CrossRef G.R. Johnson, W.H. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 21(1), 31–48 (1985)CrossRef
go back to reference L.M. Kachanov, Time of the rupture process under creep condition. Izv. Akad. Nauk. SSSR, Otd. Tekhn. Nauk 8, 26–31 (1958) L.M. Kachanov, Time of the rupture process under creep condition. Izv. Akad. Nauk. SSSR, Otd. Tekhn. Nauk 8, 26–31 (1958)
go back to reference J. Kim, X. Gao, T.S. Srivatsan, Modeling of crack growth in ductile solids: a three-dimensional analysis. Int. J. Solids Struct. 40, 7357–7374 (2003)CrossRefMATH J. Kim, X. Gao, T.S. Srivatsan, Modeling of crack growth in ductile solids: a three-dimensional analysis. Int. J. Solids Struct. 40, 7357–7374 (2003)CrossRefMATH
go back to reference J. Kim, X. Gao, T.S. Srivatsan, Modeling of void growth in ductile solids: effects of stress triaxiality and initial porosity. Eng. Fract. Mech. 71, 379–400 (2004)CrossRef J. Kim, X. Gao, T.S. Srivatsan, Modeling of void growth in ductile solids: effects of stress triaxiality and initial porosity. Eng. Fract. Mech. 71, 379–400 (2004)CrossRef
go back to reference J. Kim, G. Zhang, X. Gao, Modeling of ductile fracture: application of the mechanism-based concepts. Int. J. Solids Struct. 44, 1844–1862 (2007)CrossRefMATH J. Kim, G. Zhang, X. Gao, Modeling of ductile fracture: application of the mechanism-based concepts. Int. J. Solids Struct. 44, 1844–1862 (2007)CrossRefMATH
go back to reference J. Lemaitre, A continuous damage mechanics model for ductile fracture. J. Eng. Mater. Technol. 107, 83–89 (1985a)CrossRef J. Lemaitre, A continuous damage mechanics model for ductile fracture. J. Eng. Mater. Technol. 107, 83–89 (1985a)CrossRef
go back to reference J. Lemaitre, Coupled elasto-plasticity and damage constitutive equations. Comput. Methods Appl. Mech. Eng. 51, 31–49 (1985b)CrossRefMATH J. Lemaitre, Coupled elasto-plasticity and damage constitutive equations. Comput. Methods Appl. Mech. Eng. 51, 31–49 (1985b)CrossRefMATH
go back to reference J. Lemaître, Local Approach of fracture. Eng. Fract. Mech. 25, 523–537 (1986)CrossRef J. Lemaître, Local Approach of fracture. Eng. Fract. Mech. 25, 523–537 (1986)CrossRef
go back to reference J. Lemaitre, R. Desmorat, Engineering Damage Mechanics (Springer, Berlin, 2005) J. Lemaitre, R. Desmorat, Engineering Damage Mechanics (Springer, Berlin, 2005)
go back to reference F.A. McClintock, A criterion for ductile fracture by growth of holes. J. Appl. Mech. 35, 363–371 (1968)CrossRef F.A. McClintock, A criterion for ductile fracture by growth of holes. J. Appl. Mech. 35, 363–371 (1968)CrossRef
go back to reference J. Mediavilla, Continuous and discontinuous modeling of ductile fracture. PhD Thesis, Technische Universiteit Eindhoven, 2005 J. Mediavilla, Continuous and discontinuous modeling of ductile fracture. PhD Thesis, Technische Universiteit Eindhoven, 2005
go back to reference J. Mediavilla, R.H.J. Peerlings, M.G.D. Geers, A robust and consistent remeshing-transfer operator for ductile fracture simulations. Comput. Struct. 84(8–9), 604–623 (2006)CrossRef J. Mediavilla, R.H.J. Peerlings, M.G.D. Geers, A robust and consistent remeshing-transfer operator for ductile fracture simulations. Comput. Struct. 84(8–9), 604–623 (2006)CrossRef
go back to reference G. Mirone, D. Corallo, A local viewpoint for evaluating the influence of stress triaxiality and Lode angle on ductile failure and hardening. Int. J. Plast. 26(3), 348–371 (2010)CrossRefMATH G. Mirone, D. Corallo, A local viewpoint for evaluating the influence of stress triaxiality and Lode angle on ductile failure and hardening. Int. J. Plast. 26(3), 348–371 (2010)CrossRefMATH
go back to reference M.S. Mirza, D.C. Barton, P. Church, The effect of stress triaxiality and strain rate on the fracture characteristics of ductile metals. J. Mater. Sci. 31, 453–461 (1996)CrossRef M.S. Mirza, D.C. Barton, P. Church, The effect of stress triaxiality and strain rate on the fracture characteristics of ductile metals. J. Mater. Sci. 31, 453–461 (1996)CrossRef
go back to reference N. Möes, J. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46, 131–150 (1999)CrossRef N. Möes, J. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46, 131–150 (1999)CrossRef
go back to reference N. Möes, C. Stolz, P.-E. Bernard, N. Chevaugeon, A level set based model for damage growth: the thick level set approach. Int. J. Numer. Methods Eng. 86(3), 358–380 (2011)CrossRef N. Möes, C. Stolz, P.-E. Bernard, N. Chevaugeon, A level set based model for damage growth: the thick level set approach. Int. J. Numer. Methods Eng. 86(3), 358–380 (2011)CrossRef
go back to reference D.M. Norris, J.E. Reaugh, B. Moran, D.F. Quiñones, A plastic-strain, mean-stress criterion for ductile fracture. J. Eng. Mater. Technol., Trans ASME 100, 279–286 (1978)CrossRef D.M. Norris, J.E. Reaugh, B. Moran, D.F. Quiñones, A plastic-strain, mean-stress criterion for ductile fracture. J. Eng. Mater. Technol., Trans ASME 100, 279–286 (1978)CrossRef
go back to reference M. Ortiz, Y. Leroy, A. Needleman, A finite element method for localized failure analysis. Comput. Methods Appl. Mech. Eng. 61(2), 189–214 (1987)CrossRefMATH M. Ortiz, Y. Leroy, A. Needleman, A finite element method for localized failure analysis. Comput. Methods Appl. Mech. Eng. 61(2), 189–214 (1987)CrossRefMATH
go back to reference M. Oyane, S. Shima, T. Tabata, Considerations of basic equations and their application in the forming of metal powders and porous metals. J. Mech. Tech. 1, 325–341 (1978)CrossRef M. Oyane, S. Shima, T. Tabata, Considerations of basic equations and their application in the forming of metal powders and porous metals. J. Mech. Tech. 1, 325–341 (1978)CrossRef
go back to reference R. Peerlings, R. De Borst, W.A.M. Brekelmans, J.H.P. De Vree, Gradient-enhanced damage for quasi-brittle materials. International Journal for Numerical Methods in Engineering. 39, 1512–1533 (1996) R. Peerlings, R. De Borst, W.A.M. Brekelmans, J.H.P. De Vree, Gradient-enhanced damage for quasi-brittle materials. International Journal for Numerical Methods in Engineering. 39, 1512–1533 (1996)
go back to reference L. Piegl, Fundamental Developments of Computer Aided Geometric Design (Academic, San Diego, 1993) L. Piegl, Fundamental Developments of Computer Aided Geometric Design (Academic, San Diego, 1993)
go back to reference G. Pijaudier-Cabot, Z.P. Bažant, Nonlocal damage theory. J. Eng. Mech. 113(10), 1512–1533 (1987)CrossRef G. Pijaudier-Cabot, Z.P. Bažant, Nonlocal damage theory. J. Eng. Mech. 113(10), 1512–1533 (1987)CrossRef
go back to reference C. Polizzotto, A nonlocal strain gradient plasticity theory for finite deformations. Int. J. Plast. 25(7), 1280–1300 (2009)CrossRefMATH C. Polizzotto, A nonlocal strain gradient plasticity theory for finite deformations. Int. J. Plast. 25(7), 1280–1300 (2009)CrossRefMATH
go back to reference C. Polizzotto, G. Borino, P. Fuschi, A thermodynamic consistent formulation of nonlocal and gradient plasticity. Mech. Res. Commun. 25(1), 75–82 (1998)MathSciNetCrossRefMATH C. Polizzotto, G. Borino, P. Fuschi, A thermodynamic consistent formulation of nonlocal and gradient plasticity. Mech. Res. Commun. 25(1), 75–82 (1998)MathSciNetCrossRefMATH
go back to reference Y.N. Rabotnov, On the equations of state for creep, in Progress in Applied Mechanics, Prager Anniversary Volume, New York: MacMillan, pp 307–315 (1963) Y.N. Rabotnov, On the equations of state for creep, in Progress in Applied Mechanics, Prager Anniversary Volume, New York: MacMillan, pp 307–315 (1963)
go back to reference F. Reusch, B. Svendsen, D. Klingbeil, A non-local extension of Gurson based ductile damage modeling. Comput. Mater. Sci. 26, 219–229 (2003a)CrossRef F. Reusch, B. Svendsen, D. Klingbeil, A non-local extension of Gurson based ductile damage modeling. Comput. Mater. Sci. 26, 219–229 (2003a)CrossRef
go back to reference F. Reusch, B. Svendsen, D. Klingbeil, Local and non-local Gurson based ductile damage and failure modelling at large deformation. Eur. J. Mech. A/Solids 22, 779–792 (2003b)CrossRefMATH F. Reusch, B. Svendsen, D. Klingbeil, Local and non-local Gurson based ductile damage and failure modelling at large deformation. Eur. J. Mech. A/Solids 22, 779–792 (2003b)CrossRefMATH
go back to reference J.R. Rice, D.M. Tracey, On the ductile enlargement of voids in triaxial stress fields. J. Mech. Phys. Solids 17, 201–217 (1969)CrossRef J.R. Rice, D.M. Tracey, On the ductile enlargement of voids in triaxial stress fields. J. Mech. Phys. Solids 17, 201–217 (1969)CrossRef
go back to reference K. Saanouni, On the numerical prediction of the ductile fracture in metal forming. Eng. Fract. Mech. 75(11), 3545–3559 (2008)CrossRef K. Saanouni, On the numerical prediction of the ductile fracture in metal forming. Eng. Fract. Mech. 75(11), 3545–3559 (2008)CrossRef
go back to reference M.K. Samal, M. Seidenfuss, E. Roos, B.K. Dutta, H.S. Kushwaha, Finite element formulation of a new nonlocal damage model. Finite Elem. Anal. Des. 44, 358–371 (2008)CrossRef M.K. Samal, M. Seidenfuss, E. Roos, B.K. Dutta, H.S. Kushwaha, Finite element formulation of a new nonlocal damage model. Finite Elem. Anal. Des. 44, 358–371 (2008)CrossRef
go back to reference P.J. Sanchez, A.E. Huespe, J. Oliver, On some topics for the numerical simulation of ductile fracture. Int. J. Plast. 24(6), 1008–1038 (2008)CrossRefMATH P.J. Sanchez, A.E. Huespe, J. Oliver, On some topics for the numerical simulation of ductile fracture. Int. J. Plast. 24(6), 1008–1038 (2008)CrossRefMATH
go back to reference M. Seabra, P. Sustaric, J. Cesar de Sa, T. Rodic, Damage driven crack initiation and propagation in ductile metals using XFEM. Comput. Mech. (2012). doi:10.1007/s00466-012-0804-9 M. Seabra, P. Sustaric, J. Cesar de Sa, T. Rodic, Damage driven crack initiation and propagation in ductile metals using XFEM. Comput. Mech. (2012). doi:10.1007/s00466-012-0804-9
go back to reference J.C. Simo, T.J.R. Hughes, Computational Inelasticity (Springer, New York, 1998)MATH J.C. Simo, T.J.R. Hughes, Computational Inelasticity (Springer, New York, 1998)MATH
go back to reference J.C. Simo, J. Oliver, F. Armero, An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids. Comput. Mech. 12, 277–296 (1993)MathSciNetCrossRefMATH J.C. Simo, J. Oliver, F. Armero, An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids. Comput. Mech. 12, 277–296 (1993)MathSciNetCrossRefMATH
go back to reference A. Simone, G. Wells, L. Sluys, From continuous to discontinuous failure in a gradient-enhanced continuum damage model. Comput. Methods Appl. Mech. Eng. 192, 4581–4607 (2003)CrossRefMATH A. Simone, G. Wells, L. Sluys, From continuous to discontinuous failure in a gradient-enhanced continuum damage model. Comput. Methods Appl. Mech. Eng. 192, 4581–4607 (2003)CrossRefMATH
go back to reference J.-H. Song, H. Wang, T. Belytschko, A comparative study on finite element methods for dynamic fracture. Comput. Mech. 42(2), 239–250 (2008)CrossRefMATH J.-H. Song, H. Wang, T. Belytschko, A comparative study on finite element methods for dynamic fracture. Comput. Mech. 42(2), 239–250 (2008)CrossRefMATH
go back to reference L. Strömberg, M. Ristinmaa, FE-formulation of a nonlocal plasticity theory. Comput. Methods Appl. Mech. Eng. 136, 127–144 (1996)CrossRefMATH L. Strömberg, M. Ristinmaa, FE-formulation of a nonlocal plasticity theory. Comput. Methods Appl. Mech. Eng. 136, 127–144 (1996)CrossRefMATH
go back to reference W. Tai, B.X. Yang, A new damage mechanics criterion for ductile fracture. Eng. Fract. Mech. 27, 371–378 (1987)CrossRef W. Tai, B.X. Yang, A new damage mechanics criterion for ductile fracture. Eng. Fract. Mech. 27, 371–378 (1987)CrossRef
go back to reference X. Teng, Numerical prediction of slant fracture with continuum damage mechanics. Eng. Fract. Mech. 75, 2020–2041 (2008)CrossRef X. Teng, Numerical prediction of slant fracture with continuum damage mechanics. Eng. Fract. Mech. 75, 2020–2041 (2008)CrossRef
go back to reference V. Tvergaard, A. Needleman, Analysis of the cup-cone fracture in a round tensile bar. Acta Metall. 32, 157–169 (1984)CrossRef V. Tvergaard, A. Needleman, Analysis of the cup-cone fracture in a round tensile bar. Acta Metall. 32, 157–169 (1984)CrossRef
go back to reference V. Tvergaard, A. Needleman, Effects of nonlocal damage in porous plastic solids. Int. J. Solids Struct. 32(8/9), 1063–1077 (1995)CrossRefMATH V. Tvergaard, A. Needleman, Effects of nonlocal damage in porous plastic solids. Int. J. Solids Struct. 32(8/9), 1063–1077 (1995)CrossRefMATH
go back to reference M. Vaz, D.R.J. Owen, Aspects of ductile fracture and adaptive mesh re-finement in damaged elasto-plastic materials. Int. J. Numer. Methods Eng. 50(1), 29–54 (2001)CrossRefMATH M. Vaz, D.R.J. Owen, Aspects of ductile fracture and adaptive mesh re-finement in damaged elasto-plastic materials. Int. J. Numer. Methods Eng. 50(1), 29–54 (2001)CrossRefMATH
go back to reference G. Voyiadjis, G. Pekmezi, B. Deliktas, Nonlocal gradient-dependent modeling of plasticity with anisotropic hardening. Int. J. Plast. 26, 1335–1356 (2010)CrossRefMATH G. Voyiadjis, G. Pekmezi, B. Deliktas, Nonlocal gradient-dependent modeling of plasticity with anisotropic hardening. Int. J. Plast. 26, 1335–1356 (2010)CrossRefMATH
go back to reference L. Xue, Ductile Fracture Modeling – Theory, Experimental Investigation and Numerical Verification (Massachusetts Institute of Technology, 2007) L. Xue, Ductile Fracture Modeling – Theory, Experimental Investigation and Numerical Verification (Massachusetts Institute of Technology, 2007)
go back to reference L. Xue, Constitutive modeling of void shearing effect in ductile fracture of porous materials. Eng. Fract. Mech. 75, 3343–3366 (2008)CrossRef L. Xue, Constitutive modeling of void shearing effect in ductile fracture of porous materials. Eng. Fract. Mech. 75, 3343–3366 (2008)CrossRef
Metadata
Title
Ductile Failure Modeling: Stress Dependence, Non-locality and Damage to Fracture Transition
Authors
J. M. A. Cesar de Sa
F. M. A. Pires
F. X. C. Andrade
L. Malcher
M. R. R. Seabra
Copyright Year
2015
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-5589-9_39

Premium Partners