Skip to main content
Top

2020 | OriginalPaper | Chapter

6. Ductile Mode Cutting of Silicon

Authors : Kui Liu, Hao Wang, Xinquan Zhang

Published in: Ductile Mode Cutting of Brittle Materials

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In wafer fabrication, most machining processes such as slicing, edge grinding, finishing, lapping, polishing, back thinning and dicing, are based on grinding or/and abrasive process, which always generate micro cracks and subsurface damage. In this chapter, theoretical analysis on ductile mode cutting of silicon wafer shows that machined silicon surface with free of fracture and nanometer scale surface roughness can be achieved when dislocation dominates its chip formation rather than crack propagation. Nanometric cutting of silicon wafers using an ultra-precision CNC lathe with single crystal diamond cutters are carried out to investigate the tool edge radius effect on critical undeformed chip thickness and verify ductile mode cutting performance of silicon wafer. Machined workpiece surfaces and used diamond tools are examined using a scanning electron microscope (SEM), transmission electron microscopy (TEM) and atomic force microscope (AFM). Experimental results from the nanometric cutting tests indicate that in cutting of silicon wafers, there is a critical undeformed chip thickness, at or below which chip formation is under ductile mode cutting generating continuous chips. And critical undeformed chip thickness differs when cutting of silicon wafers using diamond cutters with different tool edge radius. Larger diamond tool edge radius, larger critical undeformed chip thickness. But there is an upper bound for diamond tool edge radius, above which chip formation is changed from ductile mode to brittle mode even though undeformed chip thickness remains to be smaller than tool edge radius. Experimental results are found to well substantiate the analytical findings and nanometric ductile mode cutting of silicon wafer is successfully achieved under certain cutting conditions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Pei ZJ, Billingsley SR, Miura S (1999) Grinding induced subsurface cracks in silicon wafers. Int J Mach Tools Manufact 39:1103–1116CrossRef Pei ZJ, Billingsley SR, Miura S (1999) Grinding induced subsurface cracks in silicon wafers. Int J Mach Tools Manufact 39:1103–1116CrossRef
2.
go back to reference Zarudi I, Zhang L (1996) Subsurface damage in single-crystal silicon due to grinding and polishing. J Mater Sci Lett 15:586–587CrossRef Zarudi I, Zhang L (1996) Subsurface damage in single-crystal silicon due to grinding and polishing. J Mater Sci Lett 15:586–587CrossRef
3.
go back to reference Brinksmeier E, von Schmieden W (1987) ID-cut-off grinding of brittle materials. CIRP Ann 36:219–222CrossRef Brinksmeier E, von Schmieden W (1987) ID-cut-off grinding of brittle materials. CIRP Ann 36:219–222CrossRef
4.
go back to reference Enomoto T, Shimazaki Y, Tani Y et al (1999) Development of a resinoid diamond wire containing metal powder for slicing a slicing ingot. CIRP Ann 48:273–276CrossRef Enomoto T, Shimazaki Y, Tani Y et al (1999) Development of a resinoid diamond wire containing metal powder for slicing a slicing ingot. CIRP Ann 48:273–276CrossRef
5.
go back to reference Yan J, Yoshino M, Kuriagawa T et al (2001) On the ductile machining of silicon for micro electro-mechanical system (MEMS), opto-electronic and optical applications. Mater Sci Eng A 297:230–234CrossRef Yan J, Yoshino M, Kuriagawa T et al (2001) On the ductile machining of silicon for micro electro-mechanical system (MEMS), opto-electronic and optical applications. Mater Sci Eng A 297:230–234CrossRef
6.
go back to reference Puttick KE, Whitmore LC, Chao CL et al (1994) Transmission electron microscopy of nanomachined silicon crystals. Phil Mag A 69:91–103CrossRef Puttick KE, Whitmore LC, Chao CL et al (1994) Transmission electron microscopy of nanomachined silicon crystals. Phil Mag A 69:91–103CrossRef
7.
go back to reference Liu K, Li XP, Rahman M et al (2007) A study of the effect of tool cutting edge radius on ductile cutting of silicon wafers. Int J Adv Manufact Technol 32:631–637CrossRef Liu K, Li XP, Rahman M et al (2007) A study of the effect of tool cutting edge radius on ductile cutting of silicon wafers. Int J Adv Manufact Technol 32:631–637CrossRef
8.
go back to reference Lucca DA, Chou P, Hocken RJ (1998) Effect of tool edge geometry on the nanometric cutting of Ge. CIRP Ann 47:475–478CrossRef Lucca DA, Chou P, Hocken RJ (1998) Effect of tool edge geometry on the nanometric cutting of Ge. CIRP Ann 47:475–478CrossRef
9.
go back to reference Blackley WS, Scattergood RO (1994) Chip topography for ductile-regime machining of germanium. ASME T J Eng Ind 116:263–266CrossRef Blackley WS, Scattergood RO (1994) Chip topography for ductile-regime machining of germanium. ASME T J Eng Ind 116:263–266CrossRef
10.
go back to reference Fang FZ, Venkatesh VC (1998) Diamond cutting of silicon with nanometric finish. CIRP Ann 47:45–49CrossRef Fang FZ, Venkatesh VC (1998) Diamond cutting of silicon with nanometric finish. CIRP Ann 47:45–49CrossRef
11.
go back to reference Moriwaki T, Shamoto E, Inoue K (1992) Ultraprecision ductile cutting of glass by applying ultrasonic vibration. CIRP Ann 41:141–144CrossRef Moriwaki T, Shamoto E, Inoue K (1992) Ultraprecision ductile cutting of glass by applying ultrasonic vibration. CIRP Ann 41:141–144CrossRef
12.
go back to reference Shibata T, Fujii S, Makino E et al (1996) Ductile-regime turning mechanism of single-crystal silicon. Precis Eng 18:129–137CrossRef Shibata T, Fujii S, Makino E et al (1996) Ductile-regime turning mechanism of single-crystal silicon. Precis Eng 18:129–137CrossRef
13.
go back to reference Hung NP, Fu YQ (2000) Effect of crystalline orientation in the ductile-regime machining of silicon. Int J Adv Manufact Technol 16:871–876CrossRef Hung NP, Fu YQ (2000) Effect of crystalline orientation in the ductile-regime machining of silicon. Int J Adv Manufact Technol 16:871–876CrossRef
14.
go back to reference Komanduri R, Chandrasekaran N, Raff LM (2001) Molecular dynamics simulation of the nanometric cutting of silicon. Philos Mag B 81:1989–2019CrossRef Komanduri R, Chandrasekaran N, Raff LM (2001) Molecular dynamics simulation of the nanometric cutting of silicon. Philos Mag B 81:1989–2019CrossRef
15.
go back to reference Yan JW, Syoji K, Tamaki J (2003) Some observations on the wear of diamond tools in ultra-precision cutting of single-crystal silicon. Wear 255:1380–1387CrossRef Yan JW, Syoji K, Tamaki J (2003) Some observations on the wear of diamond tools in ultra-precision cutting of single-crystal silicon. Wear 255:1380–1387CrossRef
16.
go back to reference Li XP, He T, Rahman M (2007) Tool wear characteristics and their effects on nanoscale ductile mode cutting of silicon wafer. Wear 25:1207–1214 Li XP, He T, Rahman M (2007) Tool wear characteristics and their effects on nanoscale ductile mode cutting of silicon wafer. Wear 25:1207–1214
17.
go back to reference Zong WJ, Sun T, Li D et al (2008) XPS analysis of the groove wearing marks on flank face of diamond tool in nanometric cutting of silicon wafer. Int J Mach Tools Manufact 48:1678–1687CrossRef Zong WJ, Sun T, Li D et al (2008) XPS analysis of the groove wearing marks on flank face of diamond tool in nanometric cutting of silicon wafer. Int J Mach Tools Manufact 48:1678–1687CrossRef
18.
go back to reference Inamura T, Shimada S, Takezawa N et al (1999) Crack initiation in machining monocrystalline silicon. CIRP Ann 48:81–84CrossRef Inamura T, Shimada S, Takezawa N et al (1999) Crack initiation in machining monocrystalline silicon. CIRP Ann 48:81–84CrossRef
19.
go back to reference Arefin S, Li XP, Liu K (2007) The upper bound of tool edge radius for nanoscale ductile cutting of silicon wafer. Int J Adv Manufact Technol 31:655–662CrossRef Arefin S, Li XP, Liu K (2007) The upper bound of tool edge radius for nanoscale ductile cutting of silicon wafer. Int J Adv Manufact Technol 31:655–662CrossRef
20.
go back to reference Liu K, Zuo DW, Li XP et al (2009) Nanometric ductile cutting characteristics of silicon wafer using single crystal diamond tools. J Vac Sci Technol B 27:1361–1366CrossRef Liu K, Zuo DW, Li XP et al (2009) Nanometric ductile cutting characteristics of silicon wafer using single crystal diamond tools. J Vac Sci Technol B 27:1361–1366CrossRef
21.
go back to reference Liu K, Li XP, Liang SY (2007) The mechanism of ductile chip formation in cutting of brittle materials. Int J Adv Manufact Technol 33:875–884CrossRef Liu K, Li XP, Liang SY (2007) The mechanism of ductile chip formation in cutting of brittle materials. Int J Adv Manufact Technol 33:875–884CrossRef
22.
go back to reference Boothroyd G, Knight WA (1989) Fundamentals of machining and machine tools. Marcel Dekker, New York Boothroyd G, Knight WA (1989) Fundamentals of machining and machine tools. Marcel Dekker, New York
24.
go back to reference Li XP, Rahman M, Liu K et al (2003) Nanoprecision measurement of diamond tool edge radius for wafer fabrication. J Mater Proc Technol 140:358–362CrossRef Li XP, Rahman M, Liu K et al (2003) Nanoprecision measurement of diamond tool edge radius for wafer fabrication. J Mater Proc Technol 140:358–362CrossRef
25.
go back to reference Liu K, Li XP, Rahman M (2002) Study on surface topography in nanometric ductile cutting of silicon wafers. In: 4th EPTC Proceedings, Singapore, pp 200–205 Liu K, Li XP, Rahman M (2002) Study on surface topography in nanometric ductile cutting of silicon wafers. In: 4th EPTC Proceedings, Singapore, pp 200–205
26.
go back to reference Uddin MS, Seah KHW, Li XP et al (2004) Effects of crystalline orientation on wear of diamond tools for nano-scale ductile cutting of silicon. Wear 257:751–759CrossRef Uddin MS, Seah KHW, Li XP et al (2004) Effects of crystalline orientation on wear of diamond tools for nano-scale ductile cutting of silicon. Wear 257:751–759CrossRef
27.
go back to reference Uddin MS, Seah KHW, Rahman M et al (2007) Performance of single crystal diamond tools in ductile mode cutting of silicon. J Mater Proc Technol 185:24–30CrossRef Uddin MS, Seah KHW, Rahman M et al (2007) Performance of single crystal diamond tools in ductile mode cutting of silicon. J Mater Proc Technol 185:24–30CrossRef
Metadata
Title
Ductile Mode Cutting of Silicon
Authors
Kui Liu
Hao Wang
Xinquan Zhang
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-32-9836-1_6

Premium Partners