Skip to main content
Top

2017 | OriginalPaper | Chapter

Dynamic Optimization of Railcar Traffic Volumes at Railway Nodes

Authors : Aleksandr Rakhmangulov, Aleksander Sładkowski, Nikita Osintsev, Pavel Mishkurov, Dmitri Muravev

Published in: Rail Transport—Systems Approach

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A major direction in the development of modern world transport systems involves the concentration of freight and traffic flows within international transport corridors and transport nodes in terminals and hubs. The changing role of rail transport is taking place under these conditions. Increased structural complexity and irregularities in cargo and railcar traffic volumes have been observed, despite the higher levels of transport equipment and technology standardization, the increased container transport volumes and consequent reduction in the cost of intermodal operations, and the interaction between different modes in transport nodes. This is largely due to the increasing need for cargo owners to lower logistics and warehouse costs, which is achieved by reducing the size of freight shipments and ensuring their uniform delivery. Moreover, privatization of the railway industry in certain countries and the sale of rolling stock to operating companies have made the coordinated management of rail fleets more difficult. The demand for improved efficiency of railcar traffic volume management in the case of complex structures is especially relevant for large railway nodes, particularly the transport systems of industrial enterprises. Here, the application of traditional approaches to the management of transportation processes involving individual elements of traffic flow (trains, railcars, locomotives) and transport infrastructure (railway stations, loading areas, rail hauls) leads to additional transport costs as a result of the increased length of time that railcars are located at the railway node. The aim of this study, therefore, is to provide improved methods for the management of RTVs at complex railway nodes based on a systematic review of RTVs in conjunction with transport infrastructure and traffic control systems. The authors review the case of a systematic approach to the organization and management of railcar traffic volumes, both for mainline rail transport and at railway nodes and industrial rail transport. This study investigates the impact of irregular railcar traffic volumes on railway node functioning by applying a dynamic simulation model of the transport system of a large metallurgical enterprise. The application of the original methodology for assessing the amount of information in the operational management system for rail transportation allowed us to estimate the effect of structural complexity and railcar traffic volume irregularities on the efficiency of the dispatch control system. The authors propose a new system of parameters and indicators for assessing railcar traffic volumes, taking into account factors of complexity and irregularity, and provide a comprehensive assessment of its effectiveness for railcar traffic volume management. For this purpose, a method of dynamic optimization of these parameters (dynamic programming) is selected. The main hypothesis of the study is that improved accuracy in parameter optimization for irregular railcar traffic volumes is achieved by adjusting the duration of the base periods which constitute the optimization period in the dynamic problem. In this study we have formulated a mathematical model for dynamic parameter optimization of railcar traffic volume on the basis of base periods of variable duration, with an algorithm for model implementation as well. Experimental verification of the effectiveness of the developed model and algorithm is conducted on the constructed process-centric railway node simulation model. Three series of experiments are conducted: without railcar traffic volume optimization, and with dynamic optimization of railcar traffic volume with the application of base periods of constant and variable duration. The experimental results demonstrate increased optimization accuracy with the use of the proposed model, reducing transport costs (time of railcar traffic volume handling) at the railway node by 11% on average. For the realization of the model and algorithm, a method is proposed for their integration in information management and intellectual transport systems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ostrovskiy AM, Druzhinina MG, Kuzmin AA (2011) Interaction of operator companies with industry and railroad. Rail Transp (2):61–63 (in Russian) Ostrovskiy AM, Druzhinina MG, Kuzmin AA (2011) Interaction of operator companies with industry and railroad. Rail Transp (2):61–63 (in Russian)
2.
go back to reference Rakhmangulov AN, Mishkurov PN, Kopylova OA (2014) Railway transport technological systems: organization of functioning: monograph. Magnitogorsk, Nosov Magnitogorsk State Technical University (in Russian) Rakhmangulov AN, Mishkurov PN, Kopylova OA (2014) Railway transport technological systems: organization of functioning: monograph. Magnitogorsk, Nosov Magnitogorsk State Technical University (in Russian)
3.
go back to reference Okulov NE (2014) Methods and ways for improvement the interaction of production and transport. PhD thesis, Ural State University of Railway Transport (in Russian) Okulov NE (2014) Methods and ways for improvement the interaction of production and transport. PhD thesis, Ural State University of Railway Transport (in Russian)
4.
go back to reference Marfin MA, Kozlov PA, Bugaev AV (1986) Simulation model increased the throughput. Ind Transp (12):8–9 (in Russian) Marfin MA, Kozlov PA, Bugaev AV (1986) Simulation model increased the throughput. Ind Transp (12):8–9 (in Russian)
5.
go back to reference Levin DY (1988) Optimization of train flows. Transport, Moscow (in Russian) Levin DY (1988) Optimization of train flows. Transport, Moscow (in Russian)
6.
go back to reference Rezer SM (1982) Integrated management of transportation process at transport nodes. Transport, Moscow (in Russian) Rezer SM (1982) Integrated management of transportation process at transport nodes. Transport, Moscow (in Russian)
7.
go back to reference Persianov VA (1983) Stations and nodes in modern transport system. Rail Trans (3) (in Russian) Persianov VA (1983) Stations and nodes in modern transport system. Rail Trans (3) (in Russian)
8.
go back to reference Sotnikov IB (1967) Theoretical foundations of interaction in the work of train departure parks of stations and surrounding areas. Moscow State University of Railway Engineering (in Russian) Sotnikov IB (1967) Theoretical foundations of interaction in the work of train departure parks of stations and surrounding areas. Moscow State University of Railway Engineering (in Russian)
9.
go back to reference Clausen U, Rotmann M (2014) Measurement and optimization of delivery performance in industrial railway systems. In: Efficiency and innovation in logistics. Lecture Notes in Logistics, pp 109–120 Clausen U, Rotmann M (2014) Measurement and optimization of delivery performance in industrial railway systems. In: Efficiency and innovation in logistics. Lecture Notes in Logistics, pp 109–120
10.
go back to reference Clausen U, Voll R (2013) A comparison of North American and European railway systems. Euro Transp Res Rev 5(3):129–133CrossRef Clausen U, Voll R (2013) A comparison of North American and European railway systems. Euro Transp Res Rev 5(3):129–133CrossRef
11.
go back to reference Rakhmangulov AN, Trofimov SV, Kornilov SN (2004) Methods for development the systems of industrial rail transport in a changing environment activities of the enterprises, Magnitogorsk. Nosov Magnitogorsk State Technical University (in Russian) Rakhmangulov AN, Trofimov SV, Kornilov SN (2004) Methods for development the systems of industrial rail transport in a changing environment activities of the enterprises, Magnitogorsk. Nosov Magnitogorsk State Technical University (in Russian)
12.
go back to reference Trofimov SV (2004) Scientific-methodical bases of functioning and development of industrial transport systems. Doctoral dissertation, Moscow State University of Railway Engineering (in Russian) Trofimov SV (2004) Scientific-methodical bases of functioning and development of industrial transport systems. Doctoral dissertation, Moscow State University of Railway Engineering (in Russian)
13.
go back to reference Osintsev NA, Rakhmangulov AN (2013) Railcar traffic volumes management in industrial transport systems. Vestnik of Nosov Magnitogorsk State Techn Univ 1(41):16–20 (in Russian) Osintsev NA, Rakhmangulov AN (2013) Railcar traffic volumes management in industrial transport systems. Vestnik of Nosov Magnitogorsk State Techn Univ 1(41):16–20 (in Russian)
14.
go back to reference Kozlov PA (1988) Theoretical basis, organizational forms, methods of optimization for flexible transport services of black metallurgy factories. Doctoral dissertation, Moscow (in Russian) Kozlov PA (1988) Theoretical basis, organizational forms, methods of optimization for flexible transport services of black metallurgy factories. Doctoral dissertation, Moscow (in Russian)
15.
go back to reference Rakhmangulov AN, Osintsev NA, Mishkurov PN, Kopylova OA (2014) Intellectualization of transport service of the metallurgical enterprises. Steel (4):115–118 (in Russian) Rakhmangulov AN, Osintsev NA, Mishkurov PN, Kopylova OA (2014) Intellectualization of transport service of the metallurgical enterprises. Steel (4):115–118 (in Russian)
16.
go back to reference Popov AT (1984) Optimization of interaction process for railway transport and production (on example of steel plant). Candidate dissertation, Moscow (in Russian) Popov AT (1984) Optimization of interaction process for railway transport and production (on example of steel plant). Candidate dissertation, Moscow (in Russian)
17.
go back to reference Komarov AV (ed) (1983) Problems of transport development in USSR. Comprehensive operation. Transport, Moscow (in Russian) Komarov AV (ed) (1983) Problems of transport development in USSR. Comprehensive operation. Transport, Moscow (in Russian)
18.
go back to reference Geraets F, Kroon L, Schoebel A, Wagner ZC (eds) (2004) Algorithmic methods for railway optimization, 320 p (in Russian) Geraets F, Kroon L, Schoebel A, Wagner ZC (eds) (2004) Algorithmic methods for railway optimization, 320 p (in Russian)
19.
go back to reference Reggiani A, Schintler LA (2005) Methods and models in transport and telecommunications cross Atlantic perspectives. Springer, Berlin 364 pCrossRef Reggiani A, Schintler LA (2005) Methods and models in transport and telecommunications cross Atlantic perspectives. Springer, Berlin 364 pCrossRef
20.
go back to reference Cascetta E (2009) Transportations systems analysis: models and applications. Springer, Berlin, 681 p (in Russian) Cascetta E (2009) Transportations systems analysis: models and applications. Springer, Berlin, 681 p (in Russian)
21.
go back to reference Aleksandrov AE (1995) Flexible control technology of inroad loop routes. Candidate dissertation, Moscow (in Russian) Aleksandrov AE (1995) Flexible control technology of inroad loop routes. Candidate dissertation, Moscow (in Russian)
22.
go back to reference Baturin AP, Borodin AF, Panin VV (2010) Railcar traffic volumes organization into same group of trains. World Transp 5(33):72–77 (in Russian) Baturin AP, Borodin AF, Panin VV (2010) Railcar traffic volumes organization into same group of trains. World Transp 5(33):72–77 (in Russian)
23.
go back to reference Osminin AT (2000) Rational organization of railcar traffic volumes based on the methods of multi-criteria optimization. Doctoral dissertation, Samara (in Russian) Osminin AT (2000) Rational organization of railcar traffic volumes based on the methods of multi-criteria optimization. Doctoral dissertation, Samara (in Russian)
24.
go back to reference Bodyul VI (2006) Improving the rhythm and efficiency of transport production through reduction of daily irregularity of freight traffic on the railways. Doctoral dissertation, Moscow (in Russian) Bodyul VI (2006) Improving the rhythm and efficiency of transport production through reduction of daily irregularity of freight traffic on the railways. Doctoral dissertation, Moscow (in Russian)
25.
go back to reference Aleksandrov AE, Yakushev NV (2006) Stochastic formulation of the dynamic transport problem with delays and the random spread of delivery time and time consumption. Manag Big Syst (12–13):5–14 (in Russian) Aleksandrov AE, Yakushev NV (2006) Stochastic formulation of the dynamic transport problem with delays and the random spread of delivery time and time consumption. Manag Big Syst (12–13):5–14 (in Russian)
26.
go back to reference Kozlov PA, Vladimirskaya IP (2009) Systems construction of automatic control for flows of railcars of different owners. Vestnik Railway Res Inst (6):8–11 (in Russian) Kozlov PA, Vladimirskaya IP (2009) Systems construction of automatic control for flows of railcars of different owners. Vestnik Railway Res Inst (6):8–11 (in Russian)
27.
go back to reference Rakhmangulov AN, Mishkurov PN (2012) Problems of method application of dynamic programming for operational management for railcar traffic volume. Mod Prob Russ Transp Complex (2):279–285 (in Russian) Rakhmangulov AN, Mishkurov PN (2012) Problems of method application of dynamic programming for operational management for railcar traffic volume. Mod Prob Russ Transp Complex (2):279–285 (in Russian)
28.
go back to reference Carey M, Lockwood D (1995) Model, algorithms and strategy for train pathing. J Oper Res Soc 46(8):988–1005CrossRefMATH Carey M, Lockwood D (1995) Model, algorithms and strategy for train pathing. J Oper Res Soc 46(8):988–1005CrossRefMATH
29.
go back to reference Carey M (1994) A model and strategy for train pathing with choice of lines, platforms, and routes. Transp Res Part B 28(5):333–353CrossRef Carey M (1994) A model and strategy for train pathing with choice of lines, platforms, and routes. Transp Res Part B 28(5):333–353CrossRef
30.
go back to reference Carey M (1994) Extending a train pathing model from one-way to two-way track. Transp Res Part B 28(5):395–400CrossRef Carey M (1994) Extending a train pathing model from one-way to two-way track. Transp Res Part B 28(5):395–400CrossRef
31.
go back to reference Dorfman MJ, Medanic J (2004) Scheduling trains on a railway network using a discrete event model of railway traffic. Transp Res Part B: Methodol 38(1):81–98CrossRef Dorfman MJ, Medanic J (2004) Scheduling trains on a railway network using a discrete event model of railway traffic. Transp Res Part B: Methodol 38(1):81–98CrossRef
32.
go back to reference Rakhmangulov A, Kolga A, Osintsev N, Stolpovskikh I, Sładkowski A (2014) Mathematical model of optimal empty rail car distribution at railway transport nodes. Transp Prob 9(3):125–132 Rakhmangulov A, Kolga A, Osintsev N, Stolpovskikh I, Sładkowski A (2014) Mathematical model of optimal empty rail car distribution at railway transport nodes. Transp Prob 9(3):125–132
33.
go back to reference Caprara A, Kroon LG, Monaci M, Peeters M, Toth P (2007) Passenger railway optimization. In: Barnhart C, Laporte G (eds) Handbooks in operations research and management science, vol 14, pp 129–187 Caprara A, Kroon LG, Monaci M, Peeters M, Toth P (2007) Passenger railway optimization. In: Barnhart C, Laporte G (eds) Handbooks in operations research and management science, vol 14, pp 129–187
34.
go back to reference Caimi G, Chudak F, Fuchsberger M, Laumanns M, Zenklusen R (2011) A new resource-constrained multicommodity flow model for conflict-free train routing and scheduling. Transp Sci 45(2):212–227CrossRef Caimi G, Chudak F, Fuchsberger M, Laumanns M, Zenklusen R (2011) A new resource-constrained multicommodity flow model for conflict-free train routing and scheduling. Transp Sci 45(2):212–227CrossRef
35.
go back to reference Blum J, Eskandarian A (2002) Enhancing intelligent agent collaboration for flow optimization of railroad traffic. Transp Res Part A: Policy Pract 36(10):919–930CrossRef Blum J, Eskandarian A (2002) Enhancing intelligent agent collaboration for flow optimization of railroad traffic. Transp Res Part A: Policy Pract 36(10):919–930CrossRef
36.
go back to reference Teornquist J (2007) Railway traffic disturbance management an experimental analysis of disturbance complexity, management objectives and borderations in planning horizon. Transp Res A: Policy Pract 41(3):249–266 Teornquist J (2007) Railway traffic disturbance management an experimental analysis of disturbance complexity, management objectives and borderations in planning horizon. Transp Res A: Policy Pract 41(3):249–266
37.
go back to reference Carey M, Crawford I (2007) Scheduling trains on a network of busy complex stations. Transp Res B: Methodol 41(2):159–178CrossRef Carey M, Crawford I (2007) Scheduling trains on a network of busy complex stations. Transp Res B: Methodol 41(2):159–178CrossRef
38.
go back to reference Erlebach T, Gantenbein M, Heurlimann D, et al. (2001) On the complexity of train assignment problems. In: Algorithms and computation, 12th international symposium, ISAAC 2001 Christchurch, New Zealand, Proceedings, vol 2223 of Lecture Notes in Computer Science, pp 390–402 Erlebach T, Gantenbein M, Heurlimann D, et al. (2001) On the complexity of train assignment problems. In: Algorithms and computation, 12th international symposium, ISAAC 2001 Christchurch, New Zealand, Proceedings, vol 2223 of Lecture Notes in Computer Science, pp 390–402
39.
go back to reference Meng X, Jia L, Chen C, Xu J, Wang L, Xie J (2010) Paths generating in emergency on China new railway network. J Beijing Inst Technol 19(2):84–88 Meng X, Jia L, Chen C, Xu J, Wang L, Xie J (2010) Paths generating in emergency on China new railway network. J Beijing Inst Technol 19(2):84–88
40.
go back to reference Lee Y, Chen C (2009) A heuristic for the train pathing and timetabling problem. Transp Res B 43(8–9):837–851CrossRef Lee Y, Chen C (2009) A heuristic for the train pathing and timetabling problem. Transp Res B 43(8–9):837–851CrossRef
41.
go back to reference Pellegrini P, Marli`ere G, Rodriguez J, Marliere G (2014) Optimal train routing and scheduling for managing traffic perturbations in complex junctions. Transp Res Part B 59:58–80 Pellegrini P, Marli`ere G, Rodriguez J, Marliere G (2014) Optimal train routing and scheduling for managing traffic perturbations in complex junctions. Transp Res Part B 59:58–80
42.
go back to reference Lusby RM, Larsen J, Ehrgott M, Ryan DM (2013) A setpacking inspired method for real-time junction train routing. Comput Oper Res 40(3):713–724CrossRefMATH Lusby RM, Larsen J, Ehrgott M, Ryan DM (2013) A setpacking inspired method for real-time junction train routing. Comput Oper Res 40(3):713–724CrossRefMATH
43.
go back to reference D’Ariano A (2008) Improving real-time train dispatching: models, algorithms and applications. PhD thesis, Delft University of Technology, Delft, The Netherlands D’Ariano A (2008) Improving real-time train dispatching: models, algorithms and applications. PhD thesis, Delft University of Technology, Delft, The Netherlands
44.
go back to reference Goverde RMP, Hansen IA (2000) TNV-prepare: analysis of Dutch railway operations based on train detection data. In: Allan J, Brebbia CA, Hill RJ, Sciutto G, Sone S (eds) Computers in railways VII. WIT Press, Southampton, UK, pp 779–788 Goverde RMP, Hansen IA (2000) TNV-prepare: analysis of Dutch railway operations based on train detection data. In: Allan J, Brebbia CA, Hill RJ, Sciutto G, Sone S (eds) Computers in railways VII. WIT Press, Southampton, UK, pp 779–788
45.
go back to reference Goverde RMP (2005) Punctuality of railway operations and timetable stability analysis. PhD thesis, Delft University of Technology, Delft, The Netherlands Goverde RMP (2005) Punctuality of railway operations and timetable stability analysis. PhD thesis, Delft University of Technology, Delft, The Netherlands
46.
go back to reference Fugenschuh A, Homfeld H & Schulldorf H (2009) Single car routing in rail freight transport. In: Barnhart C, Clausen U, Lauther U, Mohring R (eds) Dagstuhl seminar proceedings 09261, Schloss Dagstuhl - Leibniz-Zentrum fr Informatik, Deutschland Fugenschuh A, Homfeld H & Schulldorf H (2009) Single car routing in rail freight transport. In: Barnhart C, Clausen U, Lauther U, Mohring R (eds) Dagstuhl seminar proceedings 09261, Schloss Dagstuhl - Leibniz-Zentrum fr Informatik, Deutschland
47.
go back to reference Fugenschuh A, Homfeld H, Huck A, Martin A, Yuan Z (2008) Scheduling locomotives and car transfers in freight transport. Transp Sci 42(4):1–14CrossRef Fugenschuh A, Homfeld H, Huck A, Martin A, Yuan Z (2008) Scheduling locomotives and car transfers in freight transport. Transp Sci 42(4):1–14CrossRef
48.
go back to reference Barnhart C, Jin H, Vance PH (2000) Railroad blocking: a network design application. Oper Res 48(4):603–614CrossRef Barnhart C, Jin H, Vance PH (2000) Railroad blocking: a network design application. Oper Res 48(4):603–614CrossRef
49.
50.
go back to reference Ahuja RK, Jha KC, Liu J (2007) Solving real-life railroad blocking problems. Interfaces 37(5):404–419CrossRef Ahuja RK, Jha KC, Liu J (2007) Solving real-life railroad blocking problems. Interfaces 37(5):404–419CrossRef
51.
go back to reference Hailes S (2006) Modern telecommunications systems for train control. In: The 11th institution of engineering and technology professional development course on railway signalling and control systems, Manchester, UK, pp 185–192 Hailes S (2006) Modern telecommunications systems for train control. In: The 11th institution of engineering and technology professional development course on railway signalling and control systems, Manchester, UK, pp 185–192
53.
go back to reference Muravev DS, Rakhmangulov AN, Mishkurov PN (2013) Application of simulation modeling to evaluate handling capacity of sea ports and justification of the need for dry port construction. Mod Probl Russian Transp Complex 4(4):66–72 (in Russian) Muravev DS, Rakhmangulov AN, Mishkurov PN (2013) Application of simulation modeling to evaluate handling capacity of sea ports and justification of the need for dry port construction. Mod Probl Russian Transp Complex 4(4):66–72 (in Russian)
54.
go back to reference Turanov HT, Chuev NP (2012) Construction of differential models of the rolling stock movement on non-public places. Transp Sci Technol Manag 7:13–18 (in Russian) Turanov HT, Chuev NP (2012) Construction of differential models of the rolling stock movement on non-public places. Transp Sci Technol Manag 7:13–18 (in Russian)
55.
go back to reference Turanov HT, Chuev NP, Portnova OU (2013) Mathematical modeling of freight railcars movement on driveway tracks of the enterprise. Sci Technol Transp (1):26–42 (in Russian) Turanov HT, Chuev NP, Portnova OU (2013) Mathematical modeling of freight railcars movement on driveway tracks of the enterprise. Sci Technol Transp (1):26–42 (in Russian)
56.
go back to reference Turanov HT, Chuev NP, Portnova OU (2013) Numerical simulation of the freight ralcars movement on driveway tracks of industrial enterprises in maple. Transp Sci Technol Manag (12):7–14 (in Russian) Turanov HT, Chuev NP, Portnova OU (2013) Numerical simulation of the freight ralcars movement on driveway tracks of industrial enterprises in maple. Transp Sci Technol Manag (12):7–14 (in Russian)
57.
go back to reference Rakhmangulov AN, Kolga AD, Osintsev NA, Stolpovskikh IN, Sładkowski AV (2014) Mathematical model of optimal empty rail car distribution at railway transport nodes. Transp Prob 9(3):125–132 Rakhmangulov AN, Kolga AD, Osintsev NA, Stolpovskikh IN, Sładkowski AV (2014) Mathematical model of optimal empty rail car distribution at railway transport nodes. Transp Prob 9(3):125–132
58.
go back to reference Hernando A, Roanes-Lozano E, Maestre-Martínez R, Tejedor J (2010) A logic-algebraic approach to decision taking in a railway interlocking system. Ann Math Artif Intell 65(4):317–328MathSciNetCrossRefMATH Hernando A, Roanes-Lozano E, Maestre-Martínez R, Tejedor J (2010) A logic-algebraic approach to decision taking in a railway interlocking system. Ann Math Artif Intell 65(4):317–328MathSciNetCrossRefMATH
59.
go back to reference Corman D, D’Ariano A, Pacciarelli D, Pranzo D (2010) Railway dynamic traffic management in complex and densely used networks intelligent infrastructures. Intell Syst Control Autom: Sci Eng 42:377–404 (in Russian) Corman D, D’Ariano A, Pacciarelli D, Pranzo D (2010) Railway dynamic traffic management in complex and densely used networks intelligent infrastructures. Intell Syst Control Autom: Sci Eng 42:377–404 (in Russian)
60.
go back to reference White TA (2007) The development and use of dynamic traffic management simulations in North America. In: Hansen IA, Radtke A, Pachl J, Wendler E (eds) Proceedings of the 2nd international seminar on railway operations modelling and analysis, Hannover, Germany White TA (2007) The development and use of dynamic traffic management simulations in North America. In: Hansen IA, Radtke A, Pachl J, Wendler E (eds) Proceedings of the 2nd international seminar on railway operations modelling and analysis, Hannover, Germany
61.
go back to reference Sotnikov EA, Poplavskiy AA (2007) General principles of system construction for operational management of the transportation process. Transp Sci Technol Manag (2):80–87 (in Russian) Sotnikov EA, Poplavskiy AA (2007) General principles of system construction for operational management of the transportation process. Transp Sci Technol Manag (2):80–87 (in Russian)
62.
go back to reference Kozlov PA, Vladimirskaya IP (2009) A method for optimizing the structure of transport system. World Transp 26(2):84–87 (in Russian) Kozlov PA, Vladimirskaya IP (2009) A method for optimizing the structure of transport system. World Transp 26(2):84–87 (in Russian)
63.
go back to reference Kozlov PA (2007) Information technologies in transport. The modern stage. Transp Russ Fed (10):38–41 (in Russian) Kozlov PA (2007) Information technologies in transport. The modern stage. Transp Russ Fed (10):38–41 (in Russian)
64.
go back to reference Kozlov PA, Vladimirskaya IP (2009) Optimization method of interaction in the production and transport systems. Modern Prob Sci Educ (2–6):17–18 (in Russian) Kozlov PA, Vladimirskaya IP (2009) Optimization method of interaction in the production and transport systems. Modern Prob Sci Educ (2–6):17–18 (in Russian)
65.
go back to reference Aleksandrov AE (2008) The application of models within the calculation and optimization of systems for rail transport. Sci Technol Transp (2):54–56 (in Russian) Aleksandrov AE (2008) The application of models within the calculation and optimization of systems for rail transport. Sci Technol Transp (2):54–56 (in Russian)
66.
go back to reference Kutirkin AV (2004) Development of models and algorithms for solving functional tasks of the management for transport systems and production. Doctoral dissertation, Moscow (in Russian) Kutirkin AV (2004) Development of models and algorithms for solving functional tasks of the management for transport systems and production. Doctoral dissertation, Moscow (in Russian)
67.
go back to reference Potzsche C, Heuberger C, Kaltenbacher B, Rendl F (eds) System modeling and optimization (2014) 26th IFIP TC 7 conference, CSMO 2013, Klagenfurt, Austria. Springer, Berlin, 359 p (in Russian) Potzsche C, Heuberger C, Kaltenbacher B, Rendl F (eds) System modeling and optimization (2014) 26th IFIP TC 7 conference, CSMO 2013, Klagenfurt, Austria. Springer, Berlin, 359 p (in Russian)
68.
go back to reference Kozlov PA, Osokin OV, Permikin VU (2013) Automated control of the processes in the transport node. Vestnik Rostov State Univ Railway Eng 2(50):118–122 (in Russian) Kozlov PA, Osokin OV, Permikin VU (2013) Automated control of the processes in the transport node. Vestnik Rostov State Univ Railway Eng 2(50):118–122 (in Russian)
69.
go back to reference Borshchev A (2013) The big book of simulation modeling: multimethod modeling with AnyLogic 6. AnyLogic, North America Borshchev A (2013) The big book of simulation modeling: multimethod modeling with AnyLogic 6. AnyLogic, North America
70.
go back to reference Mishkurov PN (2012) Typification of industrial railway stations. Mod Prob Russ Transp Complex. (2):143–151 (in Russian) Mishkurov PN (2012) Typification of industrial railway stations. Mod Prob Russ Transp Complex. (2):143–151 (in Russian)
71.
go back to reference Gromov NN, Persianov VA, Uskov NS (2003) Management on transport. Academy, Moscow (in Russian) Gromov NN, Persianov VA, Uskov NS (2003) Management on transport. Academy, Moscow (in Russian)
72.
go back to reference Gavrishev SE, Dudkin EP, Kornilov SN, Rakhmangulov AN, Trofimov SV (2003) Transport logistics. St. Petersburg (in Russian) Gavrishev SE, Dudkin EP, Kornilov SN, Rakhmangulov AN, Trofimov SV (2003) Transport logistics. St. Petersburg (in Russian)
73.
go back to reference Kaigorodcev AA, Rakhmangulov AN (2013) Factors of efficiency for logistics distribution centers. Vestnik transporta Povolzhya 2:11–19 (in Russian) Kaigorodcev AA, Rakhmangulov AN (2013) Factors of efficiency for logistics distribution centers. Vestnik transporta Povolzhya 2:11–19 (in Russian)
74.
go back to reference Booch G, Maksimchuk R, Michael W, Bobbi Y, Jim C, Houston K (2008) Object-oriented analysis and design with applications. E-Book, 720 p Booch G, Maksimchuk R, Michael W, Bobbi Y, Jim C, Houston K (2008) Object-oriented analysis and design with applications. E-Book, 720 p
75.
go back to reference Pepevnik A, Belsak M (2011) Information system in the function of railway traffic management. Transp Prob 6(1):37–42 Pepevnik A, Belsak M (2011) Information system in the function of railway traffic management. Transp Prob 6(1):37–42
76.
go back to reference Treiber M, Kesting A (2013) traffic flow dynamics. Data, models and simulation. Springer, Berlin, p 506CrossRefMATH Treiber M, Kesting A (2013) traffic flow dynamics. Data, models and simulation. Springer, Berlin, p 506CrossRefMATH
77.
go back to reference Ran B, Boyce D (1996) Modeling dynamic transportation networks. An intelligent transportation system oriented approach. Springer, Berlin 356 pCrossRefMATH Ran B, Boyce D (1996) Modeling dynamic transportation networks. An intelligent transportation system oriented approach. Springer, Berlin 356 pCrossRefMATH
78.
go back to reference Rakhmangulov AN, Mishkurov PN (2012) Features of a simulation model building for technology of the railway station in the AnyLogic system. Collect Sci Works SWorld 2(4):7–13 (in Russian) Rakhmangulov AN, Mishkurov PN (2012) Features of a simulation model building for technology of the railway station in the AnyLogic system. Collect Sci Works SWorld 2(4):7–13 (in Russian)
79.
go back to reference Sładkowski A, Pamuła T (eds) (2016) Intelligent transportation systems—problems and perspectives, Studies in Systems Decision and Control, vol 32. Springer, Switzerland, 303 p Sładkowski A, Pamuła T (eds) (2016) Intelligent transportation systems—problems and perspectives, Studies in Systems Decision and Control, vol 32. Springer, Switzerland, 303 p
80.
go back to reference Muravev D, Aksoy S, Rakhmangulov A, Aydogdu V (2016) Comparing model development in discrete event simulation on Ro-Ro terminal example. Int J Logistics Syst Manag 3(24):283–297 Muravev D, Aksoy S, Rakhmangulov A, Aydogdu V (2016) Comparing model development in discrete event simulation on Ro-Ro terminal example. Int J Logistics Syst Manag 3(24):283–297
Metadata
Title
Dynamic Optimization of Railcar Traffic Volumes at Railway Nodes
Authors
Aleksandr Rakhmangulov
Aleksander Sładkowski
Nikita Osintsev
Pavel Mishkurov
Dmitri Muravev
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-51502-1_10

Premium Partner