Skip to main content
Top

2021 | OriginalPaper | Chapter

Dynamic Response Equivalence of a Scaled Bridge Model Due to Vehicular Movement

Authors : Paul Cahill, Vikram Pakrashi

Published in: 18th International Probabilistic Workshop

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The design of scaled testing is important for establishing equivalence with a full-scale structure but if difficult since the geometry and the material both need to be scaled. For a good, scaled testing, it is important to demonstrate the results of the scaled original structure and the designed scaled testing behave similarly, so that there is control over experimentation. Despite existing guidance around this topic, such equivalence is sometimes not checked appropriately, leading to uncertainties and variations in scaled testing which significantly compromises the usefulness of such experiments. This paper addresses this topic for a bridge-vehicle interaction problem and demonstrates how a scaled testing can show equivalence with respect to its full-scale counterpart. A Buckingham-Pi approach has been taken for scaling and the assumptions around the models and the responses are defined to establish the boundaries of the responses that are intended to be replicated. The non-dimensional parameters are defined and guide the design of future experiments. The conversion of a complex cross-sectional profile to an equivalent beam with made of a different material is dictated by the matching of modelled responses of the scaled responses of the original structure versus the unscaled responses of the experimental structure. The match indicates that establishment of such equivalence is particularly relevant for carrying out future experiments within the laboratory and subsequently linking it to full-scale structures for implementing sensors or carrying our intervention aspects such as repairs. The work also emphasizes on how a well-designed scaled testing should have a numerical benchmark for future interpretation and understanding assumptions around such interpretations when comparing full-scale experiments with controlled laboratory-based experiments, reducing uncertainty around such comparisons. The presented work is expected to be of interest for both researchers and practicing engineers.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Chang, P. C., Flatau, A., & Liu, S. C. (2003). Review paper: Health monitoring of civil infrastructure. Structural Health Monitoring, 2(3), 257–267.CrossRef Chang, P. C., Flatau, A., & Liu, S. C. (2003). Review paper: Health monitoring of civil infrastructure. Structural Health Monitoring, 2(3), 257–267.CrossRef
2.
go back to reference Brownjohn, J. M. W. (2007). Structural health monitoring of civil infrastructure. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 365(1851), 589–622. Brownjohn, J. M. W. (2007). Structural health monitoring of civil infrastructure. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 365(1851), 589–622.
3.
go back to reference Cahill, P., Hazra, B., Karoumi, R., Mathewson, A., & Pakrashi, V. (2018). Vibration energy harvesting based monitoring of an operational bridge undergoing forced vibration and train passage. Mechanical Systems and Signal Processing, 106, 265–283.CrossRef Cahill, P., Hazra, B., Karoumi, R., Mathewson, A., & Pakrashi, V. (2018). Vibration energy harvesting based monitoring of an operational bridge undergoing forced vibration and train passage. Mechanical Systems and Signal Processing, 106, 265–283.CrossRef
4.
go back to reference Fitzgerald, F., Malekjafarian, A., Bhowmik, B., Prendergast, L., Cahill, P., Kim, C. W., Hazra, B., Pakrashi, V., & OBrien, E. (2019). Scour damage detection and structural health monitoring of a laboratory-scaled bridge using a vibration energy harvesting device. Sensors, 19(11), 2572. Fitzgerald, F., Malekjafarian, A., Bhowmik, B., Prendergast, L., Cahill, P., Kim, C. W., Hazra, B., Pakrashi, V., & OBrien, E. (2019). Scour damage detection and structural health monitoring of a laboratory-scaled bridge using a vibration energy harvesting device. Sensors, 19(11), 2572.
5.
go back to reference Frýba, L., & Pirner, M. (2001). Load tests and modal analysis of bridges. Engineering Structures, 23(1), 102–109.CrossRef Frýba, L., & Pirner, M. (2001). Load tests and modal analysis of bridges. Engineering Structures, 23(1), 102–109.CrossRef
6.
go back to reference Karoumi, R., Wiberg, J., & Liljencrantz, A. (2005). Monitoring traffic loads and dynamic effects using an instrumented railway bridge. Engineering Structures, 27(12), 1813–1819.CrossRef Karoumi, R., Wiberg, J., & Liljencrantz, A. (2005). Monitoring traffic loads and dynamic effects using an instrumented railway bridge. Engineering Structures, 27(12), 1813–1819.CrossRef
7.
go back to reference Harris, H. G., & Sabnis, G. M. (1999). Structural modeling and experimental techniques (2nd ed.). Boca Raton: CRC Press LLC.CrossRef Harris, H. G., & Sabnis, G. M. (1999). Structural modeling and experimental techniques (2nd ed.). Boca Raton: CRC Press LLC.CrossRef
8.
go back to reference Law, S., Chan, T., & Zeng, Q. (1997). Moving force identification: A time domain method. Journal of Sound and Vibration, 201(1), 1–22.CrossRef Law, S., Chan, T., & Zeng, Q. (1997). Moving force identification: A time domain method. Journal of Sound and Vibration, 201(1), 1–22.CrossRef
9.
go back to reference Bilello, C., Bergman, L. a. & Kuchma, D. (2004). Experimental investigation of a small-scale bridge model under a moving mass. Journal of Structural Engineering, 130(5), 799–804. Bilello, C., Bergman, L. a. & Kuchma, D. (2004). Experimental investigation of a small-scale bridge model under a moving mass. Journal of Structural Engineering, 130(5), 799–804.
10.
go back to reference Muir Wood, D., Lombardi, D., & Bhattacharya, S. (2011). Similitude relationships for physical modelling of monopile-supported offshore wind turbines. International Journal of Physical Modelling in Geotechnics, 11(2), 58–68.CrossRef Muir Wood, D., Lombardi, D., & Bhattacharya, S. (2011). Similitude relationships for physical modelling of monopile-supported offshore wind turbines. International Journal of Physical Modelling in Geotechnics, 11(2), 58–68.CrossRef
11.
go back to reference Jaksic, V., O’Shea, R., Cahill, P., Murphy, J., Mandic, D. P., & Pakrashi, V. (2015). Dynamic response signatures of a scaled model platform for floating wind turbines in an ocean wave basin. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2035), 20140078:1–18 Jaksic, V., O’Shea, R., Cahill, P., Murphy, J., Mandic, D. P., & Pakrashi, V. (2015). Dynamic response signatures of a scaled model platform for floating wind turbines in an ocean wave basin. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2035), 20140078:1–18
12.
go back to reference Pakrashi, V., O’ Connor, A., & Basu, B. (2010). A bridge—Vehicle interaction based experimental investigation of damage evolution. Structural Health Monitoring, 9(4), 285–296. Pakrashi, V., O’ Connor, A., & Basu, B. (2010). A bridge—Vehicle interaction based experimental investigation of damage evolution. Structural Health Monitoring, 9(4), 285–296.
13.
go back to reference Buckingham, E. (1914). On physically similar systems; Illustrations of the use of dimensional equations. Physical Review, 4(4), 345–376.CrossRef Buckingham, E. (1914). On physically similar systems; Illustrations of the use of dimensional equations. Physical Review, 4(4), 345–376.CrossRef
14.
go back to reference Bhowmik, B., Tripura, T., Hazra, B., & Pakrashi, V. (2019). First order eigen perturbation techniques for real time damage detection of vibrating systems: Theory and applications. Applied Mechanics Reviews, 71(6), 060801.CrossRef Bhowmik, B., Tripura, T., Hazra, B., & Pakrashi, V. (2019). First order eigen perturbation techniques for real time damage detection of vibrating systems: Theory and applications. Applied Mechanics Reviews, 71(6), 060801.CrossRef
15.
go back to reference Mucchielli, P., Bhowmik, B., Hazra, B., & Pakrashi, V. (2020). Higher-order stabilised perturbation for recursive eigen-decomposition estimation. ASME Journal of Vibrations and Acoustics, 142(6), 061010.CrossRef Mucchielli, P., Bhowmik, B., Hazra, B., & Pakrashi, V. (2020). Higher-order stabilised perturbation for recursive eigen-decomposition estimation. ASME Journal of Vibrations and Acoustics, 142(6), 061010.CrossRef
Metadata
Title
Dynamic Response Equivalence of a Scaled Bridge Model Due to Vehicular Movement
Authors
Paul Cahill
Vikram Pakrashi
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-73616-3_21