Skip to main content
Top
Published in: GeoInformatica 2/2022

24-07-2020

Dynamic top-k influence maximization in social networks

Authors: Binbin Zhang, Hao Wang, Leong Hou U

Published in: GeoInformatica | Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The problem of top-k influence maximization is to find the set of k users in a social network that can maximize the spread of influence under certain influence propagation model. This paper studies the influence maximization problem together with network dynamics. For example, given a real-life social network that evolves over time, we want to find k most influential users on everyday basis. This dynamic influence maximization problem has wide applications in practice. However, to our best knowledge, there is little prior work that studies this problem. Applying existing influence maximization algorithms at every time step provides a straightforward solution to the dynamic top-k influence maximization problem. Such a solution is, however, inefficient as it completely ignores the smoothness of network change. By analyzing two real social networks, Brightkite and Gowalla, we observe that the top-k influential set, as well as its influence value, does not change dramatically over time. Hence, it is possible to find the new top-k influential set by updating the previous one. We propose an efficient incremental update framework that takes advantage of such smoothness of network change. The proposed method achieves the same approximation ratio of 1 − e− 1 as its state-of-the-art static counterparts. Our experiments show that the proposed method outperforms the straightforward solution by a wide margin.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
3
To be exact, I(Φ1) = 2.8224942 and I(Φ2) = 4.117388.
 
4
Given a directed graph G = (V,E), the reachability of a vertex vV is the number of vertices that are reachable from v (inclusive of v).
 
6
We are aware of the logical fallacy of post hoc ergo propter hoc. Nonetheless, we believe that the simple assumption here reflects certain aspects of the reality. After all, deliberate design of more sophisticated models will be a detraction from our main focus in this paper.
 
7
We put Eδ in the notation \(G_{\delta }=\left (V_{s},E_{s},E_{\delta }\right )\) to emphasize the fact that Gs “grows out of” Eδ, and Eδ is of essential importance in Gs, as we will see shortly in Lemmata 1-2.
 
8
Note that \(d^{\prime }_{v}\equiv {\Delta } I^{\prime }({\varPhi }_{i-1})\) for any v. In our implementation, we override the function by passing only one value instead of a vector.
 
9
We remove the experiments of varying k due to limitations of space and analogous performance to other sensitivity experiments.
 
11
Due to the limitation of space, we remove the experiments of varying this parameter p. The results are very similar to what we present in this section.
 
Literature
1.
go back to reference Bao H, Chang EC (2010) Adheat: an influence-based diffusion model for propagating hints to match ads. In: WWW Bao H, Chang EC (2010) Adheat: an influence-based diffusion model for propagating hints to match ads. In: WWW
2.
go back to reference Chen W, Wang C, Wang Y (2010) Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: KDD Chen W, Wang C, Wang Y (2010) Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: KDD
3.
go back to reference Goyal A, Bonchi F, Lakshmanan LVS (2011) A data-based approach to social influence maximization. PVLDB 5(1):73–84 Goyal A, Bonchi F, Lakshmanan LVS (2011) A data-based approach to social influence maximization. PVLDB 5(1):73–84
4.
go back to reference Yuan Y, Wang G, Wang H, Chen L (2011) Efficient subgraph search over large uncertain graphs. PVLDB 4(11):876–886 Yuan Y, Wang G, Wang H, Chen L (2011) Efficient subgraph search over large uncertain graphs. PVLDB 4(11):876–886
5.
go back to reference Yuan Y, Wang G, Chen L, Wang H (2012) Efficient subgraph similarity search on large probabilistic graph databases. PVLDB 5(9):800–811 Yuan Y, Wang G, Chen L, Wang H (2012) Efficient subgraph similarity search on large probabilistic graph databases. PVLDB 5(9):800–811
6.
go back to reference Yuan Y, Wang G, Jeffery YX, Chen L (2015) Efficient distributed subgraph similarity matching. VLDB J 24(3):369–394CrossRef Yuan Y, Wang G, Jeffery YX, Chen L (2015) Efficient distributed subgraph similarity matching. VLDB J 24(3):369–394CrossRef
7.
go back to reference Yuan Y, Lian X, Chen L, Sun Y, Wang G (2016) RSKNN: kNN search on road networks by incorporating social influence. TKDE 28(6):1575–1588 Yuan Y, Lian X, Chen L, Sun Y, Wang G (2016) RSKNN: kNN search on road networks by incorporating social influence. TKDE 28(6):1575–1588
8.
go back to reference Chen L, Shang S, Yang C, Li J (2020) Spatial keyword search: a survey. GeoInformatica 24(1):85–106CrossRef Chen L, Shang S, Yang C, Li J (2020) Spatial keyword search: a survey. GeoInformatica 24(1):85–106CrossRef
9.
go back to reference Chen L, Shang S (2019) Approximate spatio-temporal top-k publish/subscribe. World Wide Web Journal 22(5):2153–2175CrossRef Chen L, Shang S (2019) Approximate spatio-temporal top-k publish/subscribe. World Wide Web Journal 22(5):2153–2175CrossRef
10.
go back to reference Shang S, Chen L, Wei Z, Jensen CS, Zheng K, Kalnis P (2018) Parallel trajectory similarity joins in spatial networks. VLDB J 27(3):395–420CrossRef Shang S, Chen L, Wei Z, Jensen CS, Zheng K, Kalnis P (2018) Parallel trajectory similarity joins in spatial networks. VLDB J 27(3):395–420CrossRef
11.
go back to reference Shang S, Chen L, Zheng K, Jensen CS, Wei Z, Kalnis P (2019) Parallel trajectory-to-location join. TKDE 31(6):1194–1207 Shang S, Chen L, Zheng K, Jensen CS, Wei Z, Kalnis P (2019) Parallel trajectory-to-location join. TKDE 31(6):1194–1207
12.
go back to reference Chen Y-C, Peng W-C, Lee S-Y (2012) Efficient algorithms for influence maximization in social networks. KAIS 33(3):577–601 Chen Y-C, Peng W-C, Lee S-Y (2012) Efficient algorithms for influence maximization in social networks. KAIS 33(3):577–601
13.
go back to reference Domingos P, Richardson M (2001) Mining the network value of customers. In: KDD Domingos P, Richardson M (2001) Mining the network value of customers. In: KDD
14.
go back to reference Goyal A, Lu W, Lakshmanan LVS (2011) CELF++: optimizing the greedy algorithm for influence maximization in social networks. In: WWW (Companion Volume), Goyal A, Lu W, Lakshmanan LVS (2011) CELF++: optimizing the greedy algorithm for influence maximization in social networks. In: WWW (Companion Volume),
15.
go back to reference Kempe D, Kleinberg JM, Tardos E (2003) Maximizing the spread of influence through a social network. In: KDD Kempe D, Kleinberg JM, Tardos E (2003) Maximizing the spread of influence through a social network. In: KDD
16.
go back to reference Kimura M, Saito K (2006) Tractable models for information diffusion in social networks. In: PKDD Kimura M, Saito K (2006) Tractable models for information diffusion in social networks. In: PKDD
17.
go back to reference Leskovec J, Krause A, Guestrin C, Faloutsos C, VanBriesen JM, Glance NS (2007) Cost-effective outbreak detection in networks. In: KDD Leskovec J, Krause A, Guestrin C, Faloutsos C, VanBriesen JM, Glance NS (2007) Cost-effective outbreak detection in networks. In: KDD
18.
go back to reference Long C, Wong RC-W (2011) Minimizing seed set for viral marketing. In: ICDM Long C, Wong RC-W (2011) Minimizing seed set for viral marketing. In: ICDM
19.
go back to reference Richardson M, Domingos R (2002) Mining knowledge-sharing sites for viral marketing. In: KDD Richardson M, Domingos R (2002) Mining knowledge-sharing sites for viral marketing. In: KDD
20.
go back to reference Cohen E (1997) Size-estimation framework with applications to transitive closure and reachability. JCSS 55(3):441–453MathSciNetMATH Cohen E (1997) Size-estimation framework with applications to transitive closure and reachability. JCSS 55(3):441–453MathSciNetMATH
21.
go back to reference Cheng S, Shen H, Huang J, Zhang G, Cheng X (2013) Staticgreedy: solving the scalability-accuracy dilemma in influence maximization. In: CIKM Cheng S, Shen H, Huang J, Zhang G, Cheng X (2013) Staticgreedy: solving the scalability-accuracy dilemma in influence maximization. In: CIKM
22.
go back to reference Kim J, Kim S-K, Yu H (2013) Scalable and parallelizable processing of influence maximization for large-scale social networks. In: ICDE Kim J, Kim S-K, Yu H (2013) Scalable and parallelizable processing of influence maximization for large-scale social networks. In: ICDE
23.
go back to reference Liu X, Li M, Li S, Peng S, Liao X, Lu X (2014) IMGPU: Gpu-accelerated influence maximization in large-scale social networks. TPDS 25(1):136–145 Liu X, Li M, Li S, Peng S, Liao X, Lu X (2014) IMGPU: Gpu-accelerated influence maximization in large-scale social networks. TPDS 25(1):136–145
24.
go back to reference Zhuang H, Sun Y, Tang J, Zhang J, Sun X (2013) Influence maximization in dynamic social networks. In: ICDM Zhuang H, Sun Y, Tang J, Zhang J, Sun X (2013) Influence maximization in dynamic social networks. In: ICDM
25.
go back to reference Cho E, Myers SA, Leskovec J (2011) Friendship and mobility: user movement in location-based social networks. In: KDD Cho E, Myers SA, Leskovec J (2011) Friendship and mobility: user movement in location-based social networks. In: KDD
27.
go back to reference Wang C, Tang J, Sun J, Han J (2011) Dynamic social influence analysis through time-dependent factor graphs. In: ASONAM Wang C, Tang J, Sun J, Han J (2011) Dynamic social influence analysis through time-dependent factor graphs. In: ASONAM
28.
go back to reference Eppstein D (1994) Finding the k shortest paths. In: FOCS Eppstein D (1994) Finding the k shortest paths. In: FOCS
Metadata
Title
Dynamic top-k influence maximization in social networks
Authors
Binbin Zhang
Hao Wang
Leong Hou U
Publication date
24-07-2020
Publisher
Springer US
Published in
GeoInformatica / Issue 2/2022
Print ISSN: 1384-6175
Electronic ISSN: 1573-7624
DOI
https://doi.org/10.1007/s10707-020-00419-6

Other articles of this Issue 2/2022

GeoInformatica 2/2022 Go to the issue