Skip to main content
Top

2008 | OriginalPaper | Chapter

3. Dynamics

Authors : Roy Featherstone, Dr., David E. Orin, Prof

Published in: Springer Handbook of Robotics

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The dynamic equations of motion provide the relationships between actuation and contact forces acting on robot mechanisms, and the acceleration and motion trajectories that result. Dynamics is important for mechanical design, control, and simulation. A number of algorithms are important in these applications, and include computation of the following: inverse dynamics, forward dynamics, the joint-space inertia matrix, and the operational-space inertia matrix. This chapter provides efficient algorithms to perform each of these calculations on a rigid-body model of a robot mechanism. The algorithms are presented in their most general form and are applicable to robot mechanisms with general connectivity, geometry, and joint types. Such mechanisms include fixed-base robots, mobile robots, and parallel robot mechanisms.
In addition to the need for computational efficiency, algorithms should be formulated with a compact set of equations for ease of development and implementation. The use of spatial notation has been very effective in this regard, and is used in presenting the dynamics algorithms. Spatial vector algebra is a concise vector notation for describing rigid-body velocity, acceleration, inertia, etc., using six-dimensional (6-D) vectors and tensors.
The goal of this chapter is to introduce the reader to the subject of robot dynamics and to provide the reader with a rich set of algorithms, in a compact form, that they may apply to their particular robot mechanism. These algorithms are presented in tables for ready access.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.1.
go back to reference R. Featherstone: The Calculation of Robot Dynamics using Articulated-Body Inertias, Int. J. Robot. Res. 2(1), 13–30 (1983)CrossRef R. Featherstone: The Calculation of Robot Dynamics using Articulated-Body Inertias, Int. J. Robot. Res. 2(1), 13–30 (1983)CrossRef
2.2.
go back to reference J.J. Craig: Introduction to Robotics: Mechanics and Control, 3rd edn. (Pearson Prentice Hall, Upper Saddle River, NJ 2005) J.J. Craig: Introduction to Robotics: Mechanics and Control, 3rd edn. (Pearson Prentice Hall, Upper Saddle River, NJ 2005)
2.3.
go back to reference R.E. Roberson, R. Schwertassek: Dynamics of Multibody Systems (Springer-Verlag, Berlin/Heidelberg/New York 1988)MATH R.E. Roberson, R. Schwertassek: Dynamics of Multibody Systems (Springer-Verlag, Berlin/Heidelberg/New York 1988)MATH
2.4.
go back to reference J.Y.S. Luh, M.W. Walker, R.P.C. Paul: On-Line Computational Scheme for Mechanical Manipulators, Trans. ASME J. Dyn. Syst. Measur. Control 102(2), 69–76 (1980)CrossRefMathSciNet J.Y.S. Luh, M.W. Walker, R.P.C. Paul: On-Line Computational Scheme for Mechanical Manipulators, Trans. ASME J. Dyn. Syst. Measur. Control 102(2), 69–76 (1980)CrossRefMathSciNet
2.5.
go back to reference M.W. Walker, D.E. Orin: Efficient Dynamic Computer Simulation of Robotic Mechanisms, Trans. ASME J. Dyn. Syst. Measur. Control 104, 205–211 (1982)CrossRefMATH M.W. Walker, D.E. Orin: Efficient Dynamic Computer Simulation of Robotic Mechanisms, Trans. ASME J. Dyn. Syst. Measur. Control 104, 205–211 (1982)CrossRefMATH
2.6.
go back to reference D. Baraff: Linear-Time Dynamics using Lagrange Multipliers, Proc. SIGGRAPH ʼ96 (New Orleans 1996) pp. 137–146 D. Baraff: Linear-Time Dynamics using Lagrange Multipliers, Proc. SIGGRAPH ʼ96 (New Orleans 1996) pp. 137–146
2.7.
go back to reference J. Baumgarte: Stabilization of Constraints and Integrals of Motion in Dynamical Systems, Comput. Methods Appl. Mech. Eng. 1, 1–16 (1972)CrossRefMATHMathSciNet J. Baumgarte: Stabilization of Constraints and Integrals of Motion in Dynamical Systems, Comput. Methods Appl. Mech. Eng. 1, 1–16 (1972)CrossRefMATHMathSciNet
2.8.
go back to reference R. Featherstone: Rigid Body Dynamics Algorithms (Springer, Berlin, Heidelberg 2007) R. Featherstone: Rigid Body Dynamics Algorithms (Springer, Berlin, Heidelberg 2007)
2.9.
go back to reference R.M. Murray, Z. Li, S.S. Sastry: A Mathematical Introduction to Robotic Manipulation (CRC, Boca Raton, FL 1994)MATH R.M. Murray, Z. Li, S.S. Sastry: A Mathematical Introduction to Robotic Manipulation (CRC, Boca Raton, FL 1994)MATH
2.10.
go back to reference J. Angeles: Fundamentals of Robotic Mechanical Systems, 2nd edn. (Springer-Verlag, New York 2003)CrossRef J. Angeles: Fundamentals of Robotic Mechanical Systems, 2nd edn. (Springer-Verlag, New York 2003)CrossRef
2.11.
go back to reference R.S. Ball: A Treatise on the Theory of Screws (Cambridge Univ. Press, London 1900), Republished (1998) R.S. Ball: A Treatise on the Theory of Screws (Cambridge Univ. Press, London 1900), Republished (1998)
2.12.
go back to reference J.M. Selig: Geometrical Methods in Robotics (Springer, New York 1996)MATH J.M. Selig: Geometrical Methods in Robotics (Springer, New York 1996)MATH
2.13.
go back to reference D.T. Greenwood: Principles of Dynamics (Prentice-Hall, Englewood Cliffs, NJ 1988) D.T. Greenwood: Principles of Dynamics (Prentice-Hall, Englewood Cliffs, NJ 1988)
2.15.
go back to reference R. Featherstone: Robot Dynamics Algorithms (Kluwer Academic, Boston 1987) R. Featherstone: Robot Dynamics Algorithms (Kluwer Academic, Boston 1987)
2.16.
go back to reference S. McMillan, D.E. Orin: Efficient Computation of Articulated-Body Inertias Using Successive Axial Screws, IEEE Trans. Robot. Autom. 11, 606–611 (1995)CrossRef S. McMillan, D.E. Orin: Efficient Computation of Articulated-Body Inertias Using Successive Axial Screws, IEEE Trans. Robot. Autom. 11, 606–611 (1995)CrossRef
2.17.
go back to reference L. Sciavicco, B. Siciliano: Modeling and Control of Robot Manipulators, 2nd edn. (Springer, London 2000) L. Sciavicco, B. Siciliano: Modeling and Control of Robot Manipulators, 2nd edn. (Springer, London 2000)
2.18.
go back to reference J. Slotine, W. Li: On the Adaptive Control of Robot Manipulators, Int. J. Robot. Res. 6(3), 49–59 (1987)CrossRef J. Slotine, W. Li: On the Adaptive Control of Robot Manipulators, Int. J. Robot. Res. 6(3), 49–59 (1987)CrossRef
2.19.
go back to reference K.S. Chang, O. Khatib: Operational Space Dynamics: Efficient Algorithms for Modeling and Control of Branching Mechanisms. In: Proc. of IEEE International Conference on Robotics and Automation (San Francisco 2000) pp. 850–856 K.S. Chang, O. Khatib: Operational Space Dynamics: Efficient Algorithms for Modeling and Control of Branching Mechanisms. In: Proc. of IEEE International Conference on Robotics and Automation (San Francisco 2000) pp. 850–856
2.20.
go back to reference O. Khatib: A Unified Approach to Motion and Force Control of Robot Manipulators: The Operational Space Formulation, IEEE J. Robot. Autom. 3(1), 43–53 (1987)CrossRef O. Khatib: A Unified Approach to Motion and Force Control of Robot Manipulators: The Operational Space Formulation, IEEE J. Robot. Autom. 3(1), 43–53 (1987)CrossRef
2.21.
go back to reference Y.F. Zheng, H. Hemami: Mathematical Modeling of a Robot Collision with its Environment, J. Robot. Syst. 2(3), 289–307 (1985)CrossRef Y.F. Zheng, H. Hemami: Mathematical Modeling of a Robot Collision with its Environment, J. Robot. Syst. 2(3), 289–307 (1985)CrossRef
2.22.
go back to reference W. Khalil, E. Dombre: Modeling, Identification and Control of Robots (Taylor & Francis, New York 2002) W. Khalil, E. Dombre: Modeling, Identification and Control of Robots (Taylor & Francis, New York 2002)
2.23.
go back to reference J. Denavit, R.S. Hartenberg: A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices, J. Appl. Mech. 22, 215–221 (1955)MATHMathSciNet J. Denavit, R.S. Hartenberg: A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices, J. Appl. Mech. 22, 215–221 (1955)MATHMathSciNet
2.24.
go back to reference H. Brandl, R. Johanni, M. Otter: A Very Efficient Algorithm for the Simulation of Robots and Similar Multibody Systems Without Inversion of the Mass Matrix. In: Proc. of IFAC/IFIP/IMACS International Symposium on Theory of Robots, (Vienna 1986) H. Brandl, R. Johanni, M. Otter: A Very Efficient Algorithm for the Simulation of Robots and Similar Multibody Systems Without Inversion of the Mass Matrix. In: Proc. of IFAC/IFIP/IMACS International Symposium on Theory of Robots, (Vienna 1986)
2.25.
go back to reference R. Featherstone: Efficient Factorization of the Joint Space Inertia Matrix for Branched Kinematic Trees, Int. J. Robot. Res. 24(6), 487–500 (2005)CrossRef R. Featherstone: Efficient Factorization of the Joint Space Inertia Matrix for Branched Kinematic Trees, Int. J. Robot. Res. 24(6), 487–500 (2005)CrossRef
2.26.
go back to reference R. Featherstone: An Empirical Study of the Joint Space Inertia Matrix, Int. J. Robot. Res. 23(9), 859–871 (2004)CrossRef R. Featherstone: An Empirical Study of the Joint Space Inertia Matrix, Int. J. Robot. Res. 23(9), 859–871 (2004)CrossRef
2.27.
go back to reference K. Kreutz-Delgado, A. Jain, G. Rodriguez: Recursive Formulation of Operational Space Control, Proc. of IEEE International Conference on Robotics and Automation (Sacramento, CA April 1991) pp. 1750–1753CrossRef K. Kreutz-Delgado, A. Jain, G. Rodriguez: Recursive Formulation of Operational Space Control, Proc. of IEEE International Conference on Robotics and Automation (Sacramento, CA April 1991) pp. 1750–1753CrossRef
2.28.
go back to reference K.W. Lilly: Efficient Dynamic Simulation of Robotic Mechanisms (Kluwer Academic, Norwell, MA 1993)MATH K.W. Lilly: Efficient Dynamic Simulation of Robotic Mechanisms (Kluwer Academic, Norwell, MA 1993)MATH
2.29.
go back to reference K.W. Lilly, D.E. Orin: Efficient O(N) Recursive Computation of the Operational Space Inertia Matrix, IEEE Trans. Syst. Man Cybern. 23(5), 1384–1391 (1993)CrossRef K.W. Lilly, D.E. Orin: Efficient O(N) Recursive Computation of the Operational Space Inertia Matrix, IEEE Trans. Syst. Man Cybern. 23(5), 1384–1391 (1993)CrossRef
2.30.
go back to reference R.E. Ellis, S.L. Ricker: Two Numerical Issues in Simulating Constrained Robot Dynamics, IEEE Trans. Syst. Man Cybern. 24(1), 19–27 (1994)CrossRef R.E. Ellis, S.L. Ricker: Two Numerical Issues in Simulating Constrained Robot Dynamics, IEEE Trans. Syst. Man Cybern. 24(1), 19–27 (1994)CrossRef
2.31.
go back to reference J. Wittenburg: Dynamics of Systems of Rigid Bodies (B.G. Teubner, Stuttgart 1977)MATH J. Wittenburg: Dynamics of Systems of Rigid Bodies (B.G. Teubner, Stuttgart 1977)MATH
2.32.
go back to reference R. Featherstone, D.E. Orin: Robot Dynamics: Equations and Algorithms. In: Proc. of IEEE International Conference on Robotics and Automation, (San Francisco, April 2000) pp. 826–834 R. Featherstone, D.E. Orin: Robot Dynamics: Equations and Algorithms. In: Proc. of IEEE International Conference on Robotics and Automation, (San Francisco, April 2000) pp. 826–834
2.33.
go back to reference C.A. Balafoutis, R.V. Patel: Dynamic Analysis of Robot Manipulators: A Cartesian Tensor Approach (Kluwer Academic, Boston 1991)MATH C.A. Balafoutis, R.V. Patel: Dynamic Analysis of Robot Manipulators: A Cartesian Tensor Approach (Kluwer Academic, Boston 1991)MATH
2.34.
go back to reference L.W. Tsai: Robot Analysis and Design: The Mechanics of Serial and Parallel Manipulators (Wiley, New York 1999) L.W. Tsai: Robot Analysis and Design: The Mechanics of Serial and Parallel Manipulators (Wiley, New York 1999)
2.35.
go back to reference K. Yamane: Simulating and Generating Motions of Human Figures (Springer, Berlin 2004)MATH K. Yamane: Simulating and Generating Motions of Human Figures (Springer, Berlin 2004)MATH
2.36.
go back to reference F.M.L. Amirouche: Fundamentals of Multibody Dynamics: Theory and Applications (Birkhäuser, Boston 2006)MATH F.M.L. Amirouche: Fundamentals of Multibody Dynamics: Theory and Applications (Birkhäuser, Boston 2006)MATH
2.37.
go back to reference M.G. Coutinho: Dynamic Simulations of Multibody Systems (Springer, New York 2001)MATH M.G. Coutinho: Dynamic Simulations of Multibody Systems (Springer, New York 2001)MATH
2.38.
go back to reference E.J. Haug: Computer Aided Kinematics and Dynamics of Mechanical Systems (Allyn and Bacon, Boston, MA 1989) E.J. Haug: Computer Aided Kinematics and Dynamics of Mechanical Systems (Allyn and Bacon, Boston, MA 1989)
2.39.
go back to reference R.L. Huston: Multibody Dynamics (Butterworths, Boston 1990) R.L. Huston: Multibody Dynamics (Butterworths, Boston 1990)
2.40.
go back to reference A.A. Shabana: Computational Dynamics, 2nd edn. (Wiley, New York 2001)MATH A.A. Shabana: Computational Dynamics, 2nd edn. (Wiley, New York 2001)MATH
2.41.
go back to reference V. Stejskal, M. Valášek: Kinematics and Dynamics of Machinery (Marcel Dekker, New York 1996) V. Stejskal, M. Valášek: Kinematics and Dynamics of Machinery (Marcel Dekker, New York 1996)
2.42.
go back to reference L. Brand: Vector and Tensor Analysis, 4th edn. (Wiley/Chapman and Hall, New York/London 1953) L. Brand: Vector and Tensor Analysis, 4th edn. (Wiley/Chapman and Hall, New York/London 1953)
2.43.
go back to reference F.C. Park, J.E. Bobrow, S.R. Ploen: A Lie Group Formulation of Robot Dynamics, Int. J. Robot. Res. 14(6), 609–618 (1995)CrossRef F.C. Park, J.E. Bobrow, S.R. Ploen: A Lie Group Formulation of Robot Dynamics, Int. J. Robot. Res. 14(6), 609–618 (1995)CrossRef
2.44.
go back to reference M.E. Kahn, B. Roth: The Near Minimum-time Control of Open-loop Articulated Kinematic Chains, J. Dyn. Syst. Measur. Control 93, 164–172 (1971)CrossRef M.E. Kahn, B. Roth: The Near Minimum-time Control of Open-loop Articulated Kinematic Chains, J. Dyn. Syst. Measur. Control 93, 164–172 (1971)CrossRef
2.45.
go back to reference J.J. Uicker: Dynamic Force Analysis of Spatial Linkages, Trans. ASME J. Appl. Mech. 34, 418–424 (1967) J.J. Uicker: Dynamic Force Analysis of Spatial Linkages, Trans. ASME J. Appl. Mech. 34, 418–424 (1967)
2.46.
go back to reference A. Jain: Unified Formulation of Dynamics for Serial Rigid Multibody Systems, J. Guid. Control Dyn. 14(3), 531–542 (1991)CrossRefMATH A. Jain: Unified Formulation of Dynamics for Serial Rigid Multibody Systems, J. Guid. Control Dyn. 14(3), 531–542 (1991)CrossRefMATH
2.47.
go back to reference G. Rodriguez: Kalman Filtering, Smoothing, and Recursive Robot Arm Forward and Inverse Dynamics, IEEE J. Robot. Autom. RA-3(6), 624–639 (1987)CrossRef G. Rodriguez: Kalman Filtering, Smoothing, and Recursive Robot Arm Forward and Inverse Dynamics, IEEE J. Robot. Autom. RA-3(6), 624–639 (1987)CrossRef
2.48.
go back to reference G. Rodriguez, A. Jain, K. Kreutz-Delgado: A Spatial Operator Algebra for Manipulator Modelling and Control, Int. J. Robot. Res. 10(4), 371–381 (1991)CrossRef G. Rodriguez, A. Jain, K. Kreutz-Delgado: A Spatial Operator Algebra for Manipulator Modelling and Control, Int. J. Robot. Res. 10(4), 371–381 (1991)CrossRef
2.49.
go back to reference J.M. Hollerbach: A Recursive Lagrangian Formulation of Manipulator Dynamics and a Comparative Study of Dynamics Formulation Complexity, IEEE Trans. Syst. Man Cybern. SMC-10(11), 730–736 (1980)CrossRefMathSciNet J.M. Hollerbach: A Recursive Lagrangian Formulation of Manipulator Dynamics and a Comparative Study of Dynamics Formulation Complexity, IEEE Trans. Syst. Man Cybern. SMC-10(11), 730–736 (1980)CrossRefMathSciNet
2.50.
go back to reference M.W. Spong, S. Hutchinson, M. Vidyasagar: Robot Modeling and Control (Wiley, Hoboken, NJ 2006) M.W. Spong, S. Hutchinson, M. Vidyasagar: Robot Modeling and Control (Wiley, Hoboken, NJ 2006)
2.51.
go back to reference K.W. Buffinton: Kaneʼs Method in Robotics. In: Robotics and Automation Handbook, ed. by T.R. Kurfess (CRC, Boca Raton, FL 2005), 6-1 to 6-31 K.W. Buffinton: Kaneʼs Method in Robotics. In: Robotics and Automation Handbook, ed. by T.R. Kurfess (CRC, Boca Raton, FL 2005), 6-1 to 6-31
2.52.
go back to reference T.R. Kane, D.A. Levinson: The Use of Kaneʼs Dynamical Equations in Robotics, Int. J. Robot. Res. 2(3), 3–21 (1983)CrossRef T.R. Kane, D.A. Levinson: The Use of Kaneʼs Dynamical Equations in Robotics, Int. J. Robot. Res. 2(3), 3–21 (1983)CrossRef
2.53.
go back to reference C.A. Balafoutis, R.V. Patel, P. Misra: Efficient Modeling and Computation of Manipulator Dynamics Using Orthogonal Cartesian Tensors, IEEE J. Robot. Autom. 4, 665–676 (1988)CrossRef C.A. Balafoutis, R.V. Patel, P. Misra: Efficient Modeling and Computation of Manipulator Dynamics Using Orthogonal Cartesian Tensors, IEEE J. Robot. Autom. 4, 665–676 (1988)CrossRef
2.54.
go back to reference X. He, A.A. Goldenberg: An Algorithm for Efficient Computation of Dynamics of Robotic Manipulators. In: Proc. of Fourth International Conference on Advanced Robotics, (Columbus, OH, 1989) pp. 175–188 X. He, A.A. Goldenberg: An Algorithm for Efficient Computation of Dynamics of Robotic Manipulators. In: Proc. of Fourth International Conference on Advanced Robotics, (Columbus, OH, 1989) pp. 175–188
2.55.
go back to reference W. Hu, D.W. Marhefka, D.E. Orin: Hybrid Kinematic and Dynamic Simulation of Running Machines, IEEE Trans. Robot. 21(3), 490–497 (2005)CrossRef W. Hu, D.W. Marhefka, D.E. Orin: Hybrid Kinematic and Dynamic Simulation of Running Machines, IEEE Trans. Robot. 21(3), 490–497 (2005)CrossRef
2.56.
go back to reference C.A. Balafoutis, R.V. Patel: Efficient Computation of Manipulator Inertia Matrices and the Direct Dynamics Problem, IEEE Trans. Syst. Man Cybern. 19, 1313–1321 (1989)CrossRef C.A. Balafoutis, R.V. Patel: Efficient Computation of Manipulator Inertia Matrices and the Direct Dynamics Problem, IEEE Trans. Syst. Man Cybern. 19, 1313–1321 (1989)CrossRef
2.57.
go back to reference K.W. Lilly, D.E. Orin: Alternate Formulations for the Manipulator Inertia Matrix, Int. J. Robot. Res. 10, 64–74 (1991)CrossRef K.W. Lilly, D.E. Orin: Alternate Formulations for the Manipulator Inertia Matrix, Int. J. Robot. Res. 10, 64–74 (1991)CrossRef
2.58.
go back to reference S. McMillan, D.E. Orin: Forward dynamics of multilegged vehicles using the composite rigid body method, Proc. IEEE International Conference on Robotics and Automation (1998) pp. 464–470 S. McMillan, D.E. Orin: Forward dynamics of multilegged vehicles using the composite rigid body method, Proc. IEEE International Conference on Robotics and Automation (1998) pp. 464–470
2.59.
go back to reference U.M. Ascher, D.K. Pai, B.P. Cloutier: Forward Dynamics: Elimination Methods, and Formulation Stiffness in Robot Simulation, Int. J. Robot. Res. 16(6), 749–758 (1997)CrossRef U.M. Ascher, D.K. Pai, B.P. Cloutier: Forward Dynamics: Elimination Methods, and Formulation Stiffness in Robot Simulation, Int. J. Robot. Res. 16(6), 749–758 (1997)CrossRef
2.60.
go back to reference R. Featherstone: A Divide-and-Conquer Articulated-Body Algorithm for Parallel O(log(n)) Calculation of Rigid-Body Dynamics. Part 2: Trees, Loops and Accuracy, Int. J. Robot. Res. 18(9), 876–892 (1999)CrossRef R. Featherstone: A Divide-and-Conquer Articulated-Body Algorithm for Parallel O(log(n)) Calculation of Rigid-Body Dynamics. Part 2: Trees, Loops and Accuracy, Int. J. Robot. Res. 18(9), 876–892 (1999)CrossRef
2.61.
go back to reference MSC Software Corporation: Adams, [On-line] http://www.mscsoftware.com/ (Nov. 12 2007) MSC Software Corporation: Adams, [On-line] http://​www.​mscsoftware.​com/​ (Nov. 12 2007)
2.62.
go back to reference T. Kane, D. Levinson: Autolev Userʼs Manual (OnLine Dynamics Inc., 2005) T. Kane, D. Levinson: Autolev Userʼs Manual (OnLine Dynamics Inc., 2005)
2.63.
go back to reference S. McMillan, D.E. Orin, R.B. McGhee: DynaMechs: An Object Oriented Software Package for Efficient Dynamic Simulation of Underwater Robotic Vehicles. In: Underwater Robotic Vehicles: Design and Control, ed. by J. Yuh (TSI Press, Albuquerque, NM 1995) pp. 73–98 S. McMillan, D.E. Orin, R.B. McGhee: DynaMechs: An Object Oriented Software Package for Efficient Dynamic Simulation of Underwater Robotic Vehicles. In: Underwater Robotic Vehicles: Design and Control, ed. by J. Yuh (TSI Press, Albuquerque, NM 1995) pp. 73–98
2.64.
go back to reference R. Smith: Open Dynamics Engine User Guide, Available online: http://www.ode.org (Nov. 12 2007) R. Smith: Open Dynamics Engine User Guide, Available online: http://​www.​ode.​org (Nov. 12 2007)
2.65.
go back to reference Microsoft Corporation: Robotics Studio [On-line] http:www.microsoft.com/robotics (Nov. 12 2007) Microsoft Corporation: Robotics Studio [On-line] http:www.microsoft.com/robotics (Nov. 12 2007)
2.66.
go back to reference P.I. Corke: A Robotics Toolbox for MATLAB, IEEE Robot. Autom. Mag. 3(1), 24–32 (1996)CrossRef P.I. Corke: A Robotics Toolbox for MATLAB, IEEE Robot. Autom. Mag. 3(1), 24–32 (1996)CrossRef
2.67.
go back to reference M.G. Hollars, D.E. Rosenthal, M.A. Sherman: SD/FAST Userʼs Manual (Symbolic Dynamics Inc., 1994) M.G. Hollars, D.E. Rosenthal, M.A. Sherman: SD/FAST Userʼs Manual (Symbolic Dynamics Inc., 1994)
2.68.
go back to reference G.D. Wood, D.C. Kennedy: Simulating Mechanical Systems in Simulink with SimMechanics (MathWorks Inc., 2003) G.D. Wood, D.C. Kennedy: Simulating Mechanical Systems in Simulink with SimMechanics (MathWorks Inc., 2003)
2.69.
go back to reference Cyberbotics Ltd.: Webots User Guide, Available online: http://www.cyberbotics.com (Nov. 8 2007) Cyberbotics Ltd.: Webots User Guide, Available online: http://​www.​cyberbotics.​com (Nov. 8 2007)
2.70.
go back to reference I.C. Brown, P.J. Larcombe: A Survey of Customised Computer Algebra Programs for Multibody Dynamic Modelling. In: The Use of Symbolic Methods in Control System Analysis and Design, ed. by N. Munro (The Institute of Engineering and Technology, London 1999) pp. 53–77 I.C. Brown, P.J. Larcombe: A Survey of Customised Computer Algebra Programs for Multibody Dynamic Modelling. In: The Use of Symbolic Methods in Control System Analysis and Design, ed. by N. Munro (The Institute of Engineering and Technology, London 1999) pp. 53–77
2.71.
go back to reference J.J. Murray, C.P. Neuman: ARM: An algebraic robot dynamic modeling program. In: Proc. of IEEE International Conference on Robotics and Automation, Atlanta, Georgia, March (1984) pp. 103–114 J.J. Murray, C.P. Neuman: ARM: An algebraic robot dynamic modeling program. In: Proc. of IEEE International Conference on Robotics and Automation, Atlanta, Georgia, March (1984) pp. 103–114
2.72.
go back to reference J.J. Murray, C.P. Neuman: Organizing Customized Robot Dynamic Algorithms for Efficient Numerical Evaluation, IEEE Trans. Syst. Man Cybern. 18(1), 115–125 (1988)CrossRef J.J. Murray, C.P. Neuman: Organizing Customized Robot Dynamic Algorithms for Efficient Numerical Evaluation, IEEE Trans. Syst. Man Cybern. 18(1), 115–125 (1988)CrossRef
2.73.
go back to reference F.C. Park, J. Choi, S.R. Ploen: Symbolic Formulation of Closed Chain Dynamics in Independent Coordinates, Mech. Machine Theory 34, 731–751 (1999)CrossRefMATHMathSciNet F.C. Park, J. Choi, S.R. Ploen: Symbolic Formulation of Closed Chain Dynamics in Independent Coordinates, Mech. Machine Theory 34, 731–751 (1999)CrossRefMATHMathSciNet
2.74.
go back to reference M. Vukobratovic, N. Kircanski: Real-time Dynamics of Manipulation Robots. In: Scientific Fundamentals of Robotics, Vol. 4 (Springer-Verlag, New York 1985) M. Vukobratovic, N. Kircanski: Real-time Dynamics of Manipulation Robots. In: Scientific Fundamentals of Robotics, Vol. 4 (Springer-Verlag, New York 1985)
2.75.
go back to reference J. Wittenburg, U. Wolz: Mesa Verde: A Symbolic Program for Nonlinear Articulated-Rigid-Body Dynamics. In: ASME Design Engineering Division Conference and Exhibit on Mechanical Vibration and Noise, Cincinnati, Ohio, ASME Paper No. 85-DET-151, 1-8, September (1985) J. Wittenburg, U. Wolz: Mesa Verde: A Symbolic Program for Nonlinear Articulated-Rigid-Body Dynamics. In: ASME Design Engineering Division Conference and Exhibit on Mechanical Vibration and Noise, Cincinnati, Ohio, ASME Paper No. 85-DET-151, 1-8, September (1985)
2.76.
go back to reference J.Y.S. Luh, C.S. Lin: Scheduling of Parallel Computation for a Computer-Controlled Mechanical Manipulator, IEEE Trans. Syst. Man Cybern. 12(2), 214–234 (1982)CrossRef J.Y.S. Luh, C.S. Lin: Scheduling of Parallel Computation for a Computer-Controlled Mechanical Manipulator, IEEE Trans. Syst. Man Cybern. 12(2), 214–234 (1982)CrossRef
2.77.
go back to reference D.E. Orin: Pipelined Approach to Inverse Plant Plus Jacobian Control of Robot Manipulators. In: Proc. of IEEE International Conference on Robotics and Automation, Atlanta, Georgia, 169–175, March (1984) D.E. Orin: Pipelined Approach to Inverse Plant Plus Jacobian Control of Robot Manipulators. In: Proc. of IEEE International Conference on Robotics and Automation, Atlanta, Georgia, 169–175, March (1984)
2.78.
go back to reference R.H. Lathrop: Parallelism in Manipulator Dynamics, Int. J. Robot. Res. 4(2), 80–102 (1985)CrossRef R.H. Lathrop: Parallelism in Manipulator Dynamics, Int. J. Robot. Res. 4(2), 80–102 (1985)CrossRef
2.79.
go back to reference C.S.G. Lee, P.R. Chang: Efficient Parallel Algorithm for Robot Inverse Dynamics Computation, IEEE Trans. Syst. Man Cybern. 16(4), 532–542 (1986)CrossRef C.S.G. Lee, P.R. Chang: Efficient Parallel Algorithm for Robot Inverse Dynamics Computation, IEEE Trans. Syst. Man Cybern. 16(4), 532–542 (1986)CrossRef
2.80.
go back to reference M. Amin-Javaheri, D.E. Orin: Systolic Architectures for the Manipulator Inertia Matrix, IEEE Trans. Syst. Man Cybern. 18(6), 939–951 (1988)CrossRefMATH M. Amin-Javaheri, D.E. Orin: Systolic Architectures for the Manipulator Inertia Matrix, IEEE Trans. Syst. Man Cybern. 18(6), 939–951 (1988)CrossRefMATH
2.81.
go back to reference C.S.G. Lee, P.R. Chang: Efficient Parallel Algorithms for Robot Forward Dynamics Computation, IEEE Trans. Syst. Man Cybern. 18(2), 238–251 (1988)CrossRefMathSciNet C.S.G. Lee, P.R. Chang: Efficient Parallel Algorithms for Robot Forward Dynamics Computation, IEEE Trans. Syst. Man Cybern. 18(2), 238–251 (1988)CrossRefMathSciNet
2.82.
go back to reference M. Amin-Javaheri, D.E. Orin: Parallel Algorithms for Computation of the Manipulator Inertia Matrix, Int. J. Robot. Res. 10(2), 162–170 (1991)CrossRef M. Amin-Javaheri, D.E. Orin: Parallel Algorithms for Computation of the Manipulator Inertia Matrix, Int. J. Robot. Res. 10(2), 162–170 (1991)CrossRef
2.83.
go back to reference A. Fijany, A.K. Bejczy: A Class of Parallel Algorithms for Computation of the Manipulator Inertia Matrix, IEEE Trans. Robot. Autom. 5(5), 600–615 (1989)CrossRef A. Fijany, A.K. Bejczy: A Class of Parallel Algorithms for Computation of the Manipulator Inertia Matrix, IEEE Trans. Robot. Autom. 5(5), 600–615 (1989)CrossRef
2.84.
go back to reference S. McMillan, P. Sadayappan, D.E. Orin: Parallel Dynamic Simulation of Multiple Manipulator Systems: Temporal Versus Spatial Methods, IEEE Trans. Syst. Man Cybern. 24(7), 982–990 (1994)CrossRef S. McMillan, P. Sadayappan, D.E. Orin: Parallel Dynamic Simulation of Multiple Manipulator Systems: Temporal Versus Spatial Methods, IEEE Trans. Syst. Man Cybern. 24(7), 982–990 (1994)CrossRef
2.85.
go back to reference A. Fijany, I. Sharf, G.M.T. DʼEleuterio: Parallel O(logN) Algorithms for Computation of Manipulator Forward Dynamics, IEEE Trans. Robot. Autom. 11(3), 389–400 (1995)CrossRef A. Fijany, I. Sharf, G.M.T. DʼEleuterio: Parallel O(logN) Algorithms for Computation of Manipulator Forward Dynamics, IEEE Trans. Robot. Autom. 11(3), 389–400 (1995)CrossRef
2.86.
go back to reference R. Featherstone: A Divide-and-Conquer Articulated-Body Algorithm for Parallel O(log(n)) Calculation of Rigid-Body Dynamics. Part 1: Basic Algorithm, Int. J. Robot. Res. 18(9), 867–875 (1999)CrossRef R. Featherstone: A Divide-and-Conquer Articulated-Body Algorithm for Parallel O(log(n)) Calculation of Rigid-Body Dynamics. Part 1: Basic Algorithm, Int. J. Robot. Res. 18(9), 867–875 (1999)CrossRef
2.87.
go back to reference R. Featherstone, A. Fijany: A Technique for Analyzing Constrained Rigid-Body Systems and Its Application to the Constraint Force Algorithm, IEEE Trans. Robot. Autom. 15(6), 1140–1144 (1999)CrossRef R. Featherstone, A. Fijany: A Technique for Analyzing Constrained Rigid-Body Systems and Its Application to the Constraint Force Algorithm, IEEE Trans. Robot. Autom. 15(6), 1140–1144 (1999)CrossRef
2.88.
go back to reference P.S. Freeman, D.E. Orin: Efficient Dynamic Simulation of a Quadruped Using a Decoupled Tree-Structured Approach, Int. J. Robot. Res. 10, 619–627 (1991)CrossRef P.S. Freeman, D.E. Orin: Efficient Dynamic Simulation of a Quadruped Using a Decoupled Tree-Structured Approach, Int. J. Robot. Res. 10, 619–627 (1991)CrossRef
2.89.
go back to reference Y. Nakamura, K. Yamane: Dynamics Computation of Structure-Varying Kinematic Chains and Its Application to Human Figures, IEEE Trans. Robot. Autom. 16(2), 124–134 (2000)CrossRef Y. Nakamura, K. Yamane: Dynamics Computation of Structure-Varying Kinematic Chains and Its Application to Human Figures, IEEE Trans. Robot. Autom. 16(2), 124–134 (2000)CrossRef
Metadata
Title
Dynamics
Authors
Roy Featherstone, Dr.
David E. Orin, Prof
Copyright Year
2008
DOI
https://doi.org/10.1007/978-3-540-30301-5_3